FH_Chem1C_Sum09_LabQuiz2

Name KEY

1) _

2) + 0.515V

3) - 0.98 V

Read the questions carefully to understand what is being asked before answering. Use the reverse side of your answer paper as scratch. You can use periodic table and important constants charts. (Tot $Ph_{5} = 64 + 36 = 100$)

SHORT ANSWER. When appropriate show the set up and the units before showing the calculation.

1) In a voltaic cell lab experiment the E_{red} of a Zn electrode was found to be -1.018 V relative to Cu, which acted as a reference cell. In this configuration, write which metal electrode acted as (A) the cathode and which one acted as (B) the anode? (4 pts)

(A) Cu acted of cathode. Relative to Cu electrode, Zn has a negative - 1.018v (B) Zn acted a anode. Potential. So cu has more Dive reduction potential. So Cu will be preferentially reduced, which would make a cathode. And an will be the anode.

2) In a voltaic cell lab experiment the E_{red} of an Al electrode was found to be -0.515 V relative to Cu, which acted as a reference cell. Explain what would be the E_{cell} .

3) In a voltaic cell lab experiment the E_{red} of a Mg electrode was found to be - 1.32 V relative to Cu, which acted as a refenece cell. If E_{red} of Cu against a standard hydrogen electrode (SHE) is + 0.34 V, then calculate the E_{red} of Mg against a standard hydrogen electrode (SHE). (A Pts.)

Mg electrode's potential of -1.32 V is compared to Cuas reference, as O. But Cu is already up +0.34 V against SHE. So Mg should be above that value when compared with SHE

$$E_{red}$$
 of Mg against SHE = -1.32 + (+0.34)
= -0.98 V

4) In a voltaic cell lab experiment the Ered of a Mg electrode was found to be - 1.32 V 4) relative to Cu, which acted as a refenece cell. Also the Ered of a silver (Ag) electrode was found to be +0.388 V relative to Cu. If you make a galvanic cell with two half cells with Mg/Mg2+ and Ag/Ag+ half cells (black probe on Mg and red probe on Ag), then (1) identify which electrode would be the anode and (2) then calculate the the E_{cell}. (6 pts.) (1) Mg electrode would be anode 2 Between Mg & Ag, Ag has more Dive red pokewed Ecell = Ered (cathode) - Ered (anode) (2)= + 0.388 - (-1.32)

.

5) 1.55×10-12 M 5) In the copper (Cu²⁺) ammonia complex formation experiment, the voltage of the cell, Ecell before and after addition of ammonia were + 0.52 V and + 0.81 V respectively (black probe on Cu and red probe on Ag). If the concentration of Ag+ ion in the Ag half cell was 0.1M, then calculate the concentration of free Cu^{2+} left in the complex solution at 298K. (10 pts.)

$$2Ag^{\dagger}(r_{f}) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(r_{f})$$

$$E_{coll} = F_{coll} - \frac{RT}{nF} lnQ$$

$$0.8l = 0.52 - \frac{8.3145x 298}{2 \times 96480} \times lnQ$$

$$Q = 1.55 \times 10^{-10}$$

$$E(u^{2+1}) = 1.55 \times 10^{-10} (0.1)^{2} = 1.55 \times 10^{-12} M$$

6) Balance the following redox reaction with correct coefficients (in basic medium) $CN^{-}(aq) + H_{2}O(1) + M_{2}O(-(aq) - ---> CNO^{-}(aq) + M_{2}O(-(aq) + OH^{-}(aq))$ 6).

$$Oxidation: (H_{2}O + CN^{-} \rightarrow CNO^{-} + 2H^{+} + 2\bar{e}) \times 3$$

$$Reduction: (HH^{+} M n O_{4}^{-} + 3\bar{e} \rightarrow MnO_{2}^{-} + 2H_{2}O) \times 2$$

$$3H_{2}O + 3CN^{-} \rightarrow 3CNO^{-} + 6H^{+} 5\bar{e}$$

$$28H^{+} + 2MnO_{4}^{-} + 5\bar{e} \rightarrow 2MnO_{2}^{-} + XH_{2}O$$

$$3CN^{-} + 2MnO_{4}^{-} + 2H^{-} \rightarrow 3CNO^{-} + 2MnO_{2}^{-} + H_{2}O$$

$$+ 2OH^{-}$$

$$2H_{2}O$$

$$3CN^{-}(ap) + H_{2}O(L) + 2MnO_{4}^{-}(ap) \rightarrow 3CNO^{-}(ap) + 2MnO_{2} co) + 2OH^{-}(ap)$$

2 Agtag + Cur(s) -> 2 Ag (s) + Cu²⁺ cog)

7) 3.39×10-10 M

8) _

7) In an experiment to determine the K_{sp} of AgCl, a voltaic cell was constructed with a copper electrode dipped in 1 M CuSO₄ solution and a silver electrode dipped in a 1 M KCl solution and they were separated by a porous medium. The black probe was on copper electrode (anode) and the red probe was on silver electrode (cathode). The observed potential E_{cell} was 0.52 V. Two drops of 0.1 M AgNO₃ solution was then added into the KCl solution and the potential (E_{cell}) measured after equilibrium was stabilized to be - 0.04 V. Calculate the concentration of Ag⁺ ion in the solution. (10 Pt⁻) $E_{u} = E_{cell}^{\circ} - \frac{RT}{LnQ} \qquad \Im = \frac{CuT}{TAST}$

$$E_{ell} = E_{eell}^{\circ} - \frac{RT}{nF} \ln Q$$

$$= 0.04 = 0.52 - \frac{8.3145 \times 298}{2 \times 96480} \ln Q$$

$$Q = 8.72 \times 10^{18}$$

$$\frac{[Cu^{2+}]}{[Ag^{4}]^{2}} = 8.72 \times 10^{18}$$

$$\frac{1}{[Ag^{4}]^{2}} = 8.72 \times 10^{18}$$

$$\frac{1}{[Ag^{4}]^{2}} = 3.39 \times 10^{-10} M$$

8) In the reaction 3 PbO(s) + 2 NH3 (aq) ---> N2 (g) + 3 Pb(s) + 3 H2O(l), identify the oxidising agent and the reducing agent and then calculate the equivalent weights of both of them (in g/mol of electrons). (2+2+3+3 = 10 pts)

Oxidizing agent: PbO cs)
Reducing agent: NH₃ cop
Equivalent weight of PbO =
$$\frac{223 \text{ glmol}}{2 \text{ mol} \bar{e}} = 111.5 \text{ glmol} \bar{e}$$

Equivalent weight of NH₃ = $\frac{17 \text{ glmol}}{3 \text{ mol} \bar{e}} = 5.67 \text{ glmol} \bar{e}$

- 10) **Fill out the blank:** Color of the precipitate formed from Ni⁺² solutions with 10) _____ dimethylglyoxime (DMG) in ammonia solution is <u>______red___(2pts.)</u>

MULTIPLE CHOICE. Select the one alternative that best completes the statement or answers the question (4 pts each).

11) The equivalent mass of metal was found to be 56.2 g/mol. The identity of the metal is11)A) CdB) ScC) AgD) Fe

12) Color of the solution for	rmed from Fe ³⁺ solutions	with Potassium thiocyana	te (KSCN) solution is	12) <u> </u>
A) Blue	B) Purple	C) Red	D) Black	
13) Ba ²⁺ ions with potassiu	m chromate solution give	es colored prec	ipitate of formula	13) <u>B</u>
A) Red	B) Yellow	C) Green	D) White	
14) Pb ²⁺ ions with potassiu	m iodide solution gives _			14)
A) yellow solution	B) gray ppt.	C) yellow ppt.	D) brown ppt.	
15) Color of the precipitate	formed from Cu+2 solution	ons with potassium ferrocy	vanide is	15) <u>D</u>
A) White	B) Light blue	C) Grey	D) Maroon	
16) You have only one Gr. H	3 cation. You added 6M N	aOH solution to strong al	kalinity and H ₂ O ₂ . but	16)
there was no ppt. You h amount of this solution	eated the solution for 10 1 you added 3% H2O2 and	ninutes in a boiling water then acidified with 6M H	bath. To a small Cl, But the test failed	
convincingly for a blue	purple flash of color. The B) Bi2+	Gr. B cation you have is:	D) A13+	
	2) 21	0)10		
17) When temperature is in $<=>CO(g) + Cl_2(g) \Delta H$	creased in the following r =10 KI	eaction, which is in equilil	orium: COCl ₂ (g)	17) <u>A</u>
The equilibrium moves	to the:			
A) Right	B) Left	C) Left or Right	D) No effect	
18) If H ₂ is now removed fr	rom the equilibrium react	ion: $H_2(g) + 2ICl(g) <=> I$	2(g) + 2HCl(g), then	18) <u> </u>
A) Left or Right	B) Right	C) Left	D) No Effect	
19) When volume is increas	ed of the reaction which i	s in equilibrium: CH3OH	$(g) <=>CO(g) + 2H_2(g)$	19) <u>B</u>
Δ H=10 KJ; The equilibri	um moves to the:			
A) Left	B) Right	C) Left or Right	D) No effect	
20) When catalyst is added ∆H=10KJ; The equilibrin	to the following reaction a um moves to the:	at equlibrium, NO3(g) + N	IO(g) <=>2NO ₂ (g)	20)
A) Left	B) Right	C) Left or Right	D) No effect	
ny Lon	D) Ingin	C) Dert of Right	Dy no chect	