No outside paper is allowed. Use the reverse side of your answer paper as scratch. Write your questions **clearly** and using the **correct units** to get full points. For multiple choice and similar problems, show the calculation on the reverse page to get partial points. The last page contains a periodic table and some important constants. $E = E^0 - (R T / n F) \ln (Q)$; $\ln (N_t / N_0) = -k t$; $E = mc^2$). Total points = 28 + 80 + 10 = 118.

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

1) Solution of a sparingly soluble salt A_XB has concentration of $A^+ = 1.3 \times 10^{-4}$ M in equlibrium with solid salt. If K_{SD} of the salt is 1.1×10^{-12} , calculate the value of x (6 pts).

$$A \times B \rightarrow X A^{4} + B^{-}$$
 $(B) = (A^{+})^{\times} (B^{-})$
 $(CSP) = (A^{+})^{\times} (B^{-})^{\times} (B^{-}S \times 10^{-6})^{\times} (B^$

2) Pyridine, a weak base, has pKb = 8.77. What is the pH of a 0.10 M pyridine solution? (6 pts).

$$\frac{x^{2}}{0.10-x} = 1.7 \times 10^{-9}.$$

$$\frac{x^{2}}{0.10} = 1.7 \times 10^{-9}.$$

$$1 [011] = 1.3 \times 10^{-5} M.$$

3) If voltage of a Zn - H⁺ cell is 0.45 V at 25°C, when [Zn²⁺] = 1.0 M and partial pressure of hydrogen = 1.0 atm, what is the concentration of H⁺? In the expression of Q, the quotient, for the concentration of the gaseous hydrogen, you use the partial pressure. And E⁰ for Zn²⁺ + 2 e⁻ --> Zn (s) is -0.76 V (8 pts).

$$E = E^{\circ} - \frac{PT}{NF} MQ \qquad 2N + 2H^{\circ} \rightarrow 2N^{\circ} + . H_{2}$$

$$\frac{PT}{NF} MQ = E^{\circ} - E. \qquad 0.76$$

$$(0.0128) (NQ = +0.76W - 0.45V) \qquad = 0.76$$

$$\frac{[2N^{\circ}][H^{\circ}]}{[N]} = 3.3 \times 10^{10}$$

$$[H^{\circ}]^{2} \rightarrow \frac{[1.0M](1.0 \text{ adv})}{3.3 \times 10^{10}}$$

$$= .5.5 \times 10^{-6} M.$$

4) How much energy is lost / gained when a mole of cobalt-60 undergoes beta decay: 60 ₂₇Co --> 0 ₋₁e + 60 ₂₈Ni? Tha mass of 60 ₂₇Co atom, 59.933819 amu and mass of 60 ₂₈Ni atom, 59.930788 amu and mass of an 0 ₋₁e is 5.4858 x $^{10-4}$ amu. Hint: an atom consists of the nucleus and the electrons (8 pts).

1 mole weights 6.002 ams

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question (4 pts each).

Consider the following table of K_{sp} values.

Name	Formula	Ksp
Cadmium carbonate	CdCO3	5.2 × 10-12
Cadmium hydroxide	Cd(OH)2	2.5 × 10-14
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	AgI	8.3 × 10-17
Zinc carbonate	ZnCO ₃	1.4 × 10 ⁻¹¹

5) Which compound l	isted below has the	greatest molar so	lubility in water?	Pudert.	5) _	KI
A) Cd(OH) ₂	B) CdCO ₃	C) AgI	D) CaF ₂	E) ZnCO3		
6) The pH of a solution	n prepared by mix	ing 45 mL of 0.183	M KOH and 65 mL o	of 0.145 M HCl is	6) _	XD
A) 70.145	B) 1.31	C) 0.74	D) 1.97	E) 2.92		
7) Which one of the fo A) RbOH, HBr B) KOH, HF C) H3PO4, KH2I D) NH3, NH4CI			ner to form a buffer so	olution?	7) _	Z A
8) Which of the follow A) EDTA B) ethylenediami	ing is not a chelatin				8) _	D
C) oxalate anion D) chloride anion E) porphine						
9) How many bonds ca	an ethylenediamin	e form to a metal i	on?		9) _	B
A) 1	B) 2	C) 4	D) 6	E) 3		
0) Complexes containing	ng metals with wh	ich one of the follo	owing electron config	urations are usually	10)	B
A) d ⁵	B) d10	C) d1	D) d ⁸	E) d ²		

11) W	hich one of the foll	lowing complex ion	s will be paramagr	netic?		11) /
	A) $[Fe(H_2O)_6]^{3+}$	low spin) 🎢	OD.	netic?	2920	
	B) [Fe(H ₂ O) ₆] ²⁺ (low spin) ×	2	in po Cien		
	C) $[Co(H_2O)_6]^{3+}$	(low spin) 💢	4	Vere		
	D) [Zn(H ₂ O) ₄] ²⁺	2				
	E) [Zn(NH ₃) ₄] ²⁺	Contraction				
	Cost	ed .				
12) A	s a polymer becom	es <u>more</u> crystalline,	<u> </u>			12)
	A) its density decr					
	B) its yield stress of	decreases ×				
	C) its melting poir	nt decreases 🗡				
	D) its stiffness dec	reases 📈				
	E) none of the abo	ve are correct				
			(1)	1		D
13) W		w has 2 unpaired el				13)
		edral [Fe(CN)6]3-	11/11/X X 11/11/	M M		
	B) square-planar	Y - LO- A	Tileli	7 10	(III)	[11(11)
	C) tetrahedral [Fe]	n n	FI	1 161/	WIN	10.10
	D) octahedral [Ni(NH ₃) ₆] ²⁺ (1611	[1][1]	CITT	Tr. In.
	E) tetrahedral [Co	Cl4]2-				
		way.			111	B
14) Tl		ondensation polyme		es	I In (n)	14)
		ulfur with an additi				
		of a small molecule	: 1(00			
	C) the vaporization		1.		4 0 1080	len /
		f significant crosslir	nking		₹ 26. 0.198V	
	E) the addition of	a piasticizer		S = 0		
		re required to prod		inum metal from t		15)
	A) 1.19 × 10 ³	B) 27.0	C) 3.57 × 10 ³	D) 9.00	E) 2.90 × 10 ⁵	
						^
16) Bo	ombardment of ura neutrons.	nium-238 with a de	uteron (hydrogen	-2) generates nept	unium-237 and	16)
	A) 1	B) 2	C) 3	D) 4	E) 5	
				560.	. M F8c	
			0 or	7+ 2H.	-> 93	
			(30	0	+	

17) The empirical formula of an addition polymer	17)	D
A) is the same as that of the monomer from which it is formed except that 2 H and 1 C have been subtracted		
B) is the same as that of the monomer from which it is formed except that 2 H and 1 C have been added		
C) is the same as that of the monomer from which it is formed except that 2 H and 1 O have been subtracted		
D) is the same as that of the monomer from which it is formed		
E) is the same as that of the monomer from which it is formed except that 2 H and 1 O have been added		
18) Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50×10^{-4} .	18)	E
A) 1.12×10^{-4} B) 5.53 C) 0.342 $H^{+}](A^{-}] = 4.5 \times 10^{-4}$		
B) 5.53		*
D) 0.0450		
E) 4.25		
19) Which transformation could take place at the anode of an electrochemical cell?	19)	E
A) HAsO2 to As Oxidation by the factor	,	
B) Cr ₂ O ₇ 2- → Cr ² + ×		
C) F ₂ toF- ×		
D) O ₂ to H ₂ O \checkmark		
E) None of the above could take place at the anode.		
20) What is the coefficient of Fe ³⁺ when the following equation is balanced?	20) .	B
20) What is the coefficient of Fe ³⁺ when the following equation is balanced? $CN^{-} + Fe^{3+} \rightarrow CNO^{-} + Fe^{2+} \qquad \text{(basic solution)}$	CH0_	+ 11
A) 1 B) 2 C) 3 D) 4 E) 5		+ 20
21) The more the value of E°red, the greater the driving force for reduction.	21) .	D
A) exothermic		
B) extensive		
C) negative		
D) positive /		

E) endothermic

1.000 KID

C= 1000 K100

- 22) Cesium-137 undergoes beta decay and has a half-life of 30 years. How many beta particles are emitted by a 14.0-g sample of cesium-137 in three minutes?

- A) 6.1×10^{13}
- B) 1.3×10^{-8}
- C) 6.2×10^{22}
- D) 8.1 × 1015
- E) 8.4×10^{15}

Table	20.2
-------	------

Table 20.2 Half-reaction	E° (V)
Cr^{3+} (aq) + 3e ⁻ \rightarrow Cr (s)	-0.74
Fe^{2+} (aq) + 2e ⁻ \rightarrow Fe (s)	-0.440
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (s)	+0.771
Sn^{4+} (aq) + 2e ⁻ \rightarrow Sn^{2+} (aq)	+0.154 Wed of

- 6.34 X 10 22 A A . E
- 23) Which of the following reactions will occur spontaneously as written?

E) Sn^{4+} (aq) + Fe^{2+} (s) $\rightarrow Sn^{2+}$ (aq) + Fe (s) \times

Which of the following reactions will occur spontaneously as written?

A)
$$Sn^{2+}$$
 (aq) + Fe^{2+} (s) $\rightarrow Sn^{4+}$ (aq) + Fe^{3+} (aq)

B) $2Cr^{3+}$ (aq) + $3Sn^{2+}$ (aq) $\rightarrow 3Sn^{4+}$ (aq) + $2Cr$ (s)

C) $2Cr$ (s) + $3Fe^{2+}$ (s) $\rightarrow 3Fe$ (s) + $2Cr^{3+}$ (aq)

D) $3Fe^{2+}$ (aq) + Cr^{3+} (aq) $\rightarrow Cr$ (s) + $3Fe^{3+}$ (aq)

- 24) Which one of the following can be done to shorten the half-life of the radioactive decay of uranium-238?

- A) freeze it
- B) convert it to UF6
- C) heat it
- D) oxidize it to the +2 oxidation state
- E) none of the above

TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false (2 pts each).

- 25) E cell is the difference between the reduction potential at the cathode and the potential at the rod anode.

Polyethylene is formed by a condensation reaction.

- Vulcanization involves heating rubber with sulfur dioxide to produce a thermosetting polymer.
- 27) F
- 28) The extent of ionization of a weak electrolyte is increased by adding to the solution a strong electrolyte that has an ion in common with the weak electrolyte.
- 28) _ F
- 29) The standard reduction potential of X is 1.23 V and that of Y is -0.44 V therefore X is oxidized by ridised Y.
- 29)

noduced