

Please read all the questions VERY carefully before answering. Start from number 8 on your scantron for multiple choice questions. Write neatly. If I cannot read your answer, you will not receive any point. Use the attached periodic table and constant chart. No outside paper is allowed. Total points = 46 + (30x3 =)90 = 136

SHORT ANSWER. In all calculations, (1) write the set up equation first, then (2) put the raw data with units. Finally (3) do your calculations with correct number of significant figures. Points will be deducted if your answer is not clearly written.

1) 61:77x103mL 1) Show calculations with units to convert 16.32 gallon (gal) into milliliter (mL) (given 1 gal = 3.785 L and 1 L = 1000 mL). (6 pts.)

2) A room has dimensions of 10.0 ft \times 20.0 ft \times 8.00 ft. Given that there are three feet in a yard, calculate the volume of the room in yd³? (8 pts.) (140=3ft)

3) Calculate the density of 96 mL of a liquid that has a mass of 90.5 g? (6 pts.)

X = 96 m L 2 sis Fil Check .443 - 90.5 = V (96) M = VD = 96 . 943 = 90.528

- 4) Show your calculation to find how many kilojoules are there in 95.0 Calories with correct numbers of significant figures? (Note the capital C in Calorie and given 1 cal = 4.18 joules)
- 4) 9.97x10 Ki

(al -7 cal -7) -> Ki

- 5) Suppose it took 108 joules of energy to raise a bar of gold from 25.0°C to 29.7°C. Given that the specific heat capacity of gold is 0.128 J/g.°C, what is the mass (in grams) of the bar of gold? Show all your calculations with set up equation and units. Given $q = m.C. \Delta T.$ (8 pts.)

$$M = \frac{9}{\text{C} \cdot \Delta T} = \frac{108 \text{ j}}{128 \text{ j/g°c}} \left(\frac{25.6c - 29.7°c}{29.7°c - 25.0°c}\right)$$

6) If a mixture of salt and sand contained 45.9% salt then calculate the amound of sand present 25.68 g of the mixture (6 pts.)

7) Chlorine has two isotopes: Cl-35 wih natural abundance 75.77% and mass of 34.97 amu and another one Cl-37 with natural abundance 24.23% and mass 36.97 amu. Calculate the atomic mass of chlorine with correct unit (6 pt.).

7) 35.45 gny

MULTIPLE CHOICE. Start from number 8 on your scantron. Choose the one alternative that best completes the statement or answers the question (3 pts. each).

- 8) The correct scientific notation for the number 0.00050210 is:
 - A) 5.0210×10^4
 - B) 5.021×10^{-4}
 - (C)5.0210 × 10-4
 - D) 5.021×10^4
 - E) none of the above
- 9) The correct number of significant figures in the number 0.027090 is:

9) **A**

- (A))5 B) 6
- C) 7
- D) ambiguous
- E) none of the above
- 10) Determine the answer to the following equation with correct number of significant figures: $(4.123 \times 0.12) + 24.2 = 24.7$

74.69 - . .

10) <u>B</u>

- A) 24.695
- (B) 24.7
- C) 24.70
- D) 25
- E) none of the above
- 11) The correct prefix for the multiplier 1,000,000 is:

11) <u>A</u>

- (A) mega.
 - B) micro.
 - C) milli.
- D) nano.
- E) none of the above

- 12) What is the standard SI unit for mass?
 - A) kilogram
 - B) ton
 - C) gram
 - D) pound
 - E) none of the above
- 13) How many cm³ are there in 1.25 ft³?
 - A) 38.1
 - B) 3.54×10^4
 - C) 5.49×10^3
 - D) 246
 - E) none of the above
- 14) The distance from New York City to Washington, DC is approximately 235 miles. Identify the correct solution map to convert from miles to kilometers using the prefix multipliers and the given conversion factors: 1 mile = 5280 ft; 1 ft = 12 in; 1 in = 2.54 cm.
 - A) 235 mile × $\frac{12 \text{ in}}{1 \text{ ft}}$ × $\frac{2.54 \text{ cm}}{1 \text{ in}}$ × $\frac{1 \text{ m}}{10^{-2} \text{ cm}}$ × $\frac{10^3 \text{ km}}{1 \text{ m}}$
 - By 235 mile × $\frac{1 \text{ ft}}{5280 \text{ mile}}$ × $\frac{12 \text{ in}}{1 \text{ ft}}$ × $\frac{1 \text{ in}}{2.54 \text{ gm}}$ × $\frac{10^{-2} \text{ cm}}{1 \text{ m}}$ × $\frac{1 \text{ km}}{10^3 \text{ m}}$
 - C) 235 mile $\times \frac{5280 \text{ ft}}{1 \text{ mile}} \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{2.54 \text{ cm}}{1 \text{ in}} \times \frac{10^{-2} \text{ m}}{1 \text{ cm}} \times \frac{1 \text{ km}}{10^3 \text{ m}}$
 - D) 235 mile × $\frac{12 \text{ in}}{1 \text{ ft}}$ × $\frac{1 \text{ in}}{2.54 \text{ cm}}$ × $\frac{10^{-2} \text{ cm}}{1 \text{ m}}$ × $\frac{1 \text{ km}}{10^3 \text{ m}}$ E) 235 mile × $\frac{5280 \text{ ft}}{1 \text{ mile}}$ × $\frac{1 \text{ ft}}{12 \text{ in}}$ × $\frac{2.54 \text{ in}}{1 \text{ ft}}$ × $\frac{1 \text{ m}}{10^{-2} \text{ cm}}$ × $\frac{10^3 \text{ km}}{1 \text{ m}}$
- 15) What is the density (g/mL) of an object that has a mass of 14.01 grams and, when placed into a graduated cylinder, causes the water level to rise from 25.2 mL to 33.6 mL?
 - A) 1.8
 - B) 1.7
 - C) 2.4
 - D) 0.60
 - E) none of the above
- 16) Which state of matter has indefinite shape and is compressible?
 - A) plasma
 - B) liquid
 - C) solid
 - D) gas
 - E) none of the above

14) C

	17) How would you classify salt water?	17)
	A) pure substance-element	
	B) mixture-heterogeneous	
	(C))mixture-homogeneous	
	D) pure substance-compound	
	E) none of the above	
	•	
1	18) Which of the following items is a chemical property?	10\ D
X	A) the paint color on a new red Corvette	18)
,	(B) the tarnishing of a copper statue	
	C) the odor of spearmint gum	
	D) the melting and boiling point of water	
	E) none of the above	
	19) If a particular process is endothermic, the reverse process must be a (an)	19)
	A) chemical change.	
	B) isothermal process.	i.
	C) endothermic process.	
	(D) exothermic process.	
	E) none of the above	
	20) What is the value of 98 °F in units of °C?	20)
	(A))37	20)
	B) 371	_ *
	C) 22	
	D) 72	
	E) none of the above	
	-/	
1	21) Suppose it took 108 joules of energy to raise a bar of gold from 25.0°C to 29.7°C. Given that the	21) C
\wedge	specific heat capacity of gold is 0.128 J/g·°C, what is the mass (in grams) of the bar of gold?	21)
	A) 6.5×10^{1} g	
	B) 1.28×10^2 g	
	(\acute{c}) 1.8 × 10 ² g	
	D) 1.08×10^2 g	
	E) none of the above	
	,	
	22) The atomic mass unit is defined as:	22)
	(A) 1/12 the mass of a carbon atom containing six protons and six neutrons.	22)
	B) the mass of electrons found in a carbon atom containing six protons and neutrons.	
	C) 1/14 the mass of a nitrogen atom containing 7 protons and 7 neutrons.	
	D) the mass of the hydrogen atom containing only one proton.	
	E) none of the above	
	22) M/h; sh of the fellowing along the land 120	T
	23) Which of the following elements has only 12 protons?	23)
	A) O	
	B) C	
	C) Zn	
	(D) Mg	
	E) none of the above	

	A) silicon, phosphorus, magnesium, and sulfur. B) silicon, potassium, magnesium, and sulfur.	
	D) SHCOIL DOIASSIUM, Magnesium, and Sulfur	¥
	Silicon, potassium, magnesium, and sodium.	
	silver, phosphorus, magnesium, and sulfur.	
	E) silicon, phosphorus, manganese, and sulfur.	
	25) Cr is a member of which family?	25) E
	A) alkali metals	20)
	B) noble gases	
	C) alkaline earth metals	
1	D) halogens	
	(E)none of the above	
	26) What is the correct formula for a potassium ion with 18 electrons?	26) <u>A</u>
	(A) k+	
	B) P-	
	C) P+	
	D) K-	
	E) none of the above	
A	27) An atom that has the same number of neutrons as ${}^{138}_{56}$ Ba is:	27)
M		21)
	A) $^{136}_{56}$ Ba	
	B) $\frac{137}{57}$ La	
	C) ¹³⁸ ₅₅ Cs	
	$\binom{D}{54}^{136}$ Xe	
	E) none of the above	
	2) Hore of the above	
	28) How many protons and electrons are present in O^{2-} ?	20)
	(A) 8 protons and 10 electrons	28) <u>A</u>
	B) 10 protons and 8 electrons	
	C) 8 protons and 8 electrons	
	D) 16 protons and 8 electrons	
	E) none of the above	
	29) Isotopes are:	29) 🖰
	A) atoms of the same element that have different number of protons.	
	and the same element that have uniferent number of protons.	
	(B) atoms of the same element that have different number of neutrons.	
•	B) atoms of the same element that have different number of neutrons. C) atoms of the same element that have different number of electrons. D) atoms of the same element that have the same number of neutrons.	

	30) A fictional eleme	nt has two naturally occurring isotop	es with the natural abundances shown here:	30) A		
	ISOTOPE	ABUNDANCE		APPROXIMATION OF THE PROPERTY		
	18	40.0%				
	20	60.0%				
Which statement is TRUE for this element? A) The atomic mass would be closer to 20 than to 18						
	(A) The atomic mass would be closer to 20 than to 18. B) The atomic mass would be greater than 20.					
		mass would be closer to 18 than to 20		,		
		nass would be exactly 19.				
	The atomic	mass would be less than 18.				
	•					
TRUE	FALSE. In scantron	fill the circle "A" for a True answer	and "B" for False answer (3 pts. each).			
				2		
	31) The decimal num	ber 0.0000010 expressed in scientific	notation is 1.0×10^6 .	31) 15		
				0		
	32) Zeros located bet	veen two numbers are not significan	t.	32) \(\sum_{\text{S}} \)		
			•	Δ.		
	33) When the temper	ature of an object is reported as 23.7°	C, the actual temperature can be assumed to	33) A		
	be between 23.6°		•	,		
٨	8					
	34) One mile measur	es 5,280 feet long, so one square mile	is equivalent to 5,280 square feet.	34)		
7.			1			
	35) The atomic numb	er of nitrogen is 14.01.		35)		
	,		>	00)		
	36) The charges on e	ectrons and neutrons cancel each oth	or to give neutral atoms	36) B		
	50) The charges off e.	ections and neutrons cancer each our	er to give neutral atoms.	36)		
A	27) A satism farms			B		
K	5/) A canon forms w	nen an atom gains an electron.		37)		