Please read all the questions VERY carefully before answering. Use a pen to answer the short question and a pencil to fill out the circles in the scantron. Write neatly. If I cannot read your answer, you will not receive any point. Use the attached periodic table and constant chart. No outside paper is allowed. Total points $=43+(29 \times 3 \Rightarrow 87=130$

SHORT ANSWER. In all calculations, write the set up equation first, then put the raw data with units. Then do your calculations. Points will be deducted if your answer is not clearly written.

1) Show calculations with units to convert 16.32 gallon (gal) into milliliter (mL) (given 1
2) gal $=3.785 \mathrm{~L}$ and $1 \mathrm{~L}=1000 \mathrm{~mL})$. $(5 \mathrm{pts}$.)
3) Calculate (with units) how many m^{2} are in $2659 \mathrm{~cm}^{2}$ (given $1 \mathrm{~m}=100 \mathrm{~cm}$.)? (6 pts .)
4) Calculate the density of 96 mL of a liquid that has a mass of 90.5 g ? (6 pts .)
5)
6)
7) Show your calculation to find how many kilojoules are there in 95.0 Calories? (Note
8) Suppose it took 108 joules of energy to raise a bar of gold from $25.0^{\circ} \mathrm{C}$ to $29.7^{\circ} \mathrm{C}$. Given that the specific heat capacity of gold is $0.128 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, what is the mass (in grams) of the bar of gold? Show all your calculations with set up equation and units. (8 pts.)
9) During density measurement of sulphur, if the sulphur piece was large and the top of the sulphur was above the water level, would your measured density of sulphur would be
(a) HIGH or LOW or it would be CORRECT (circle the correct one) (2 pts)
(b) Explain/show your logic (2 pts.).

MASS (amu)	ABUNDANCE
22.1760	45.00%
23.1847	45.00%
24.1934	10.00%

Show your calculation to determine the atomic mass of the element. (8pts.)

MULTIPLE CHOICE. Use scantron to answer the questions. Choose the one alternative that best completes the statement or answers the question (3 pts . each).
8) The correct decimal representation of 1.201×10^{-7} is:
8)
A) 12010000
B) 0.0000001201
C) 0.0001201
D) 1201.000
E) none of the above
9) There are exactly 2.54 centimeters in 1 inch. When using this conversion factor, how many significant figures are you limited to?
A) 1
B) 3
C) ambiguous
D) depends on if you are using it in multiplication/division or addition/subtraction
E) infinite number of significant figures
10) The correct number of significant figures in the number 0.002320 is:
10)
A) 7
B) 3
C) 4
D) ambiguous
E) none of the above
11) Determine the answer to the following equation with correct number of significant figures:
\qquad
A) 80.5498
B) 81
C) 80.55
D) 80.5
E) none of the above
12) Determine the answer to the following equation with correct number of significant figures:
$(17.103+2.03) \times 1.02521=$ \qquad
A) 19.6
B) 20
C) 19.62
D) 19.6153
E) none of the above
13) The correct prefix for the multiplier $1,000,000,000$ is:
A) milli.
B) giga.
C) mega.
D) tera.
E) none of the above
14) The standard SI unit for temperature is:
A) atmospheres.
B) Fahrenheit.
C) Kelvin.
D) Celsius.
E) none of the above.
15) How many cm^{3} are there in $1.25 \mathrm{ft}^{3}$?
A) 38.1
B) 3.54×104
C) 5.49×103
D) 246
E) none of the above
16) What is the density $(\mathrm{g} / \mathrm{mL})$ of an object that has a mass of 14.01 grams and, when placed into a graduated cylinder, causes the water level to rise from 25.2 mL to 33.6 mL ?
A) 1.7
B) 0.60
C) 2.4
D) 1.8
E) none of the above
17) The distance from New York City to Washington, DC is approximately 235 miles. Identify the correct solution map to convert from miles to kilometers using the prefix multipliers and the given conversion factors: 1 mile $=5280 \mathrm{ft} ; 1 \mathrm{ft}=12 \mathrm{in} ; 1 \mathrm{in}=2.54 \mathrm{~cm}$.
A) 235 mile $\times \frac{5280 \mathrm{ft}}{1 \mathrm{mile}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}$
B) 235 mile $\times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{10^{-2} \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}$
C) 235 mile $\times \frac{5280 \mathrm{ft}}{1 \text { mile }} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{2.54 \mathrm{in}}{1 \mathrm{ft}} \times \frac{1 \mathrm{~m}}{10^{-2} \mathrm{~cm}} \times \frac{10^{3} \mathrm{~km}}{1 \mathrm{~m}}$
D) 235 mile $\times \frac{1 \mathrm{ft}}{5280 \mathrm{mile}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{10^{-2} \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}$
E) 235 mile $\times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1 \mathrm{~m}}{10^{-2} \mathrm{~cm}} \times \frac{10^{3} \mathrm{~km}}{1 \mathrm{~m}}$
18) Which state of matter has indefinite shape and is compressible?
A) plasma
B) liquid
C) solid
D) gas
E) none of the above
19) Which of the following items is a pure substance?
A) seawater
B) brass
C) air
D) ice
E) none of the above
20) Which of the following is a heterogenous mixture?
A) sugar water
B) air
C) milk
D) raisin bran
E) none of the above
21) Which of the following statements is FALSE?
21)
A) Mixtures may be composed of two or more elements, two or more compounds, or a combination of both.
B) A pure substance may either be an element or a compound.
C) A mixture may be either homogeneous or heterogeneous.
D) Matter may be a pure substance or it may be a mixture.
E) All of the above statements are true.
22) An energy diagram that shows the reactants having greater energy than the products illustrates an
A) isothermic reaction.
B) exothermic reaction.
C) endothermic reaction.
D) impossible reaction.
E) none of the above
23) What is the value of 335 K on the Celsius temperature scale?
A) 66.4
B) 62
C) 167
D) 608
E) none of the above
24) A 15.0 gram lead ball at $25.0^{\circ} \mathrm{C}$ was heated with 40.5 joules of heat. Given the specific heat of lead is $0.128 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, what is the final temperature of the lead?
A) $0.844^{\circ} \mathrm{C}$
B) $46.1^{\circ} \mathrm{C}$
C) $21.1^{\circ} \mathrm{C}$
D) $77.8^{\circ} \mathrm{C}$
E) none of the above

25) The atomic mass unit is defined as:

A) the mass of electrons found in a carbon atom containing six protons and neutrons.
B) the mass of the hydrogen atom containing only one proton.
C) $1 / 14$ the mass of a nitrogen atom containing 7 protons and 7 neutrons.
D) $1 / 12$ the mass of a carbon atom containing six protons and six neutrons.
E) none of the above
26) Which of the following elements has an atomic number of 4 ?
A) H
B) C
C) Be
D) He
E) none of the above
27) What is the atomic symbol for tin?
27)
A) Ti
B) Tn
C) Si
D) Sn
E) none of the above
28) Nonmetals are located where on the periodic table?
28)
A) left side
B) zig-zag diagonal line
C) right side
D) middle
E) none of the above
29) Cr is a member of which family?
29)
A) halogens
B) alkali metals
C) noble gases
D) alkaline earth metals
E) none of the above
30) How many electrons are in Br^{-}?
30)
A) 36
B) 4
C) 7
D) 34
E) none of the above
31) How many protons and neutrons are in $\mathrm{Cl}-37$?
A) 17 protons, 20 neutrons
B) 20 protons, 17 neutrons
C) 17 protons, 37 neutrons
D) 37 protons, 17 neutrons
E) none of the above

TRUE/FALSE. In scantron fill the circle " A " for a True answer and " B " for False answer (3 pts. each).
32) The number 0.010100 has five significant figures.
32)

$$
\begin{aligned}
& \text { 33) In addition or subtraction, the result carries the same number of decimal places as the quantity } \\
& \text { carrying the fewest decimal places. }
\end{aligned}
$$

34) When the number 65.59 is rounded to contain 2 significant figures, it becomes 66.0.
35) The elemental symbol for manganese is Mg.
36) Protons and electrons each have a mass of 1 amu.
37)
