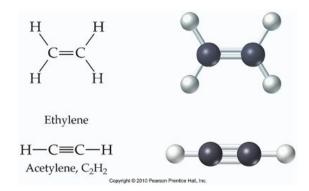
Chapter 12

Goals:


- ✓ Know that organic chemistry is the study of carbon based compounds.
- ✓ Be able to name and draw straight chained hydrocarbons and branched hydrocarbons with up to 10 carbons in the parent chain.
- ✓ Know the difference in saturated and unsaturated hydrocarbons, and understand the general formulas for alkanes, alkenes and alkynes.
- ✓ Be able to recognize constitutional and cis-trans isomers.
- ✓ Know the definition of a functional group.
- ✓ Be able to recognize and name the functional groups listed in table 12.1 (excepts anhydride).
- ✓ Understand the molecular geometry of organic compounds (this is from chapter 5).

Organic Chemistry

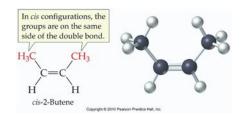
- Organic chemistry is the branch of chemistry that deals with the study of carbon based compounds.
- Hydrocarbons are the simplest organic compounds and are made up of C and H only.
 - Saturated: contain the maximum number of H atoms possible per C atom. Saturated hydrocarbons are known as alkanes.

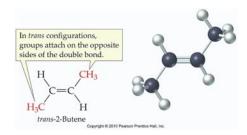
Unsaturated: contain less than the maximum number of H atoms possible per C atom.
 Unsaturated hydrocarbons are known as alkenes or alkynes.

Nomenclature of Straight Chained Hydrocarbons

Composed of a prefix that tells how many carbons are in the chain:

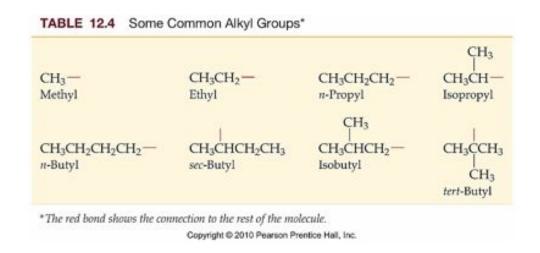
- Meth-
- Eth-
- Prop-
- But-
- Pent-
- Hex-
- Hept-
- Oct-
- Non-
- Dec-


Composed of a suffix that tells whether it is an alkane, alkene or alkyne:


- -ane
- -ene
- -yne

Isomers

- Iso- means same and –mers means parts.
- Isomers are compounds with the same molecular formula, but different chemical structures.
- Structural isomers (constitutional isomers) have the same molecular formula, but a different connectivity
 of atoms.


• Geometric isomers (cis-trans isomers) have the same molecular formula, same connectivity of atoms, but different 3-D arrangements about the double bond; only alkenes can have geometric isomers.

Nomenclature of Branched Alkanes

- 1. Name the longest chain
- 2. Number the main chain giving the lowest number priority to any branched groups
- 3. Name the branched groups and identify their position by the number in the chain
- 4. Write the full name as a single word
 - use hyphens to separate numbers from prefixes
 - use commas to separate numbers from numbers
 - use alphabetical order for branched groups
 - use di-, tri-, or tetra- prefixes if there are multiples of the same branch group

Nomenclature of Branched Alkenes and Alkynes

- 1. Name the parent chain, the longest chain containing the double or triple bond
- 2. Number the chain giving the lowest priority to the double or triple bond
- 3. Assign a name and number to the branched groups
- 4. Write the full name as one word
 - use hyphens to separate numbers from prefixes
 - use commas to separate numbers from numbers
 - use alphabetical order for branched groups
 - use di-, tri-, or tetra- prefixes if there are multiples of the same branch group
 - if it is an alkene, determine if cis-trans isomers apply

Functional Groups

When a small portion of a molecule is responsible for that molecule's reactivity we call that small portion a functional group.

FAMILY NAME	FUNCTIONAL GROUP	SMPLE EXAMPLE	SHOW
Alliane	Contains only C—H and C—C single bonds	CH,CH ₂ Ethere	-610
Alkeno	>-<	H ₂ C=CH ₂ Effylese	- 100
Alloyee Assessed	-8-	H-C=C-H Astylens (Dhyne)	-year Name
Alkyl halsde		Ot,—O Methylethande	New
Alsohel	-¢-0-H	CH ₂ -CH MellyLatorbal (Methanol)	-el
Diher		Gly-O-Gly Desettyletter	None
Amine	+-<	CH ₂ -NH ₂ Methylamine	wheele
Aldebydo	-¢-E-11	CHy=C=H Autolidehyde (Ethena)	-
Katune	-4-4-	CH ₂ -C-CH ₂ Assume	-010
Carbecytic odd	-¢-2-04	CH,-C-OH AMERICA	-ic no
Anhydride	-f-l-o-l-f-	CH, -C-O-C-CH, Assicushydrale	None
Descr	-6-6-0-6-	CH ₃ -C-O-CH ₃ Mobilianes	-84
Amide	-c-c-NH, -c-c-N-H	CH ₂ -C-NH ₂ Automide	-mid
	-\$-E-y-		

Problems for Ch 12

1. Circle and name the functional group(s):

- 2. Draw and name the saturated, unbranched alkane with 5 carbons.
- 3. Draw an isomer of pentane.
- 4. Draw 2-methyl-2-butene, and explain why there is no cis-trans isomer for this molecule.