MC_Chem12B_Sp11_LecTest1 Answer Section

SHORT ANSWER

1. ANS:

1-methyl-2,4-benzenediamine or 2,4-diaminotoluene

PTS: 1

2. ANS:

(E)-2-ethylbut-2-en-1-ol

PTS: 1

3. ANS:

The carbocation is sp^2 -hybridized, so if the oxygen is also sp^2 -hybridized then each atom in the cycle has a conjugated *p*-orbital. Each double bond contributes two pi electrons and the oxygen contributes two pi electrons, for a total of six pi electrons in the conjugated system. Therefore, this species is predicted to show aromatic character.

PTS: 1

4. ANS:

This compound, [16]annulene, appears to be a cyclic, planar, conjugated molecule with 16 pi electrons. However, 16 is not a Hückel number, so the compound is probably not planar, and is not aromatic.

PTS: 1

5. ANS:

The formula C_7H_7CIO corresponds to a base formula of C_7H_8 . A saturated formula is C_7H_{16} so there are $(16 - 8) \div 2 = 4$ degrees of unsaturation.

PTS: 1

6. ANS:

PTS: 1

7. ANS:

The conjugate bases of Compounds Q and Z are both resonance stabilized. Let's examine all resonance structures for both conjugate bases:

For the conjugate base QB the negative charge is delocalized into the ring. This generates a cyclopentadienyl anion that is aromatic. For the conjugate base ZB, the negative charge is delocalized by resonance but no aromatic ions result. Therefore, Compound Q should be the most acidic, since its anion is the most stable.

- **PTS:** 1
- 8. ANS:
 - g
- PTS: 1 9. ANS:
 - . b
 - PTS: 1
- 10. ANS: d
 - PTS: 1
- 11. ANS: h
 - PTS: 1
- 12. ANS:

CH3CH2

PTS: 1

N.R. Nucleophilic Aromatic Substitution requires an electron-withdrawing group in the ortho or para position. A methyl group is electron donating, and substitution will not occur.

PTS: 1

PTS: 1

PTS: 1

PTS: 1

23. ANS:

PTS: 1 24. ANS:

PTS: 1

PTS: 1

PTS: 1

27.	ANS: NO ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	NO2 CH3CH3CH2CHOH	CH3CH2CH2CH2OH	NO2 СН3СНСН2СН2ОН
	3	1	4	2

PTS: 1

28. ANS: d

PTS: 1

29. ANS: b

PTS: 1

5

6