$\qquad$
Read questions carefully before answering. No outside paper is allowed. Write set up equation for a mathematical problem, then put the raw data with units, before showing the calculation. Use the reverse side of your answer paper as scratch. Use the periodic table and important constants charts provided. (Total points = $66+(16 * 3=) 48=114)$.

## Show your calculation with set up and units (when appropriate)

1) The initial rate of the reaction $A+B$-----> $C$ was measured at several different concentrations of the reactants. Following formal methods, (a) calculate the rate law for the reaction ( 6 pts.) and (b) The magnitude of the rate constant ( 2 pts .).

Initial Concentrations Initial Rate

| Experiment | $[\mathrm{A}](\mathrm{M})$ | $[\mathrm{B}](\mathrm{M})$ | $\left(\mathrm{M} \mathrm{s}^{-1}\right)$ |
| :--- | :--- | :--- | :--- |
| 1 | 0.10 | 0.10 | $4.0 \times 10^{-5}$ |
| 2 | 0.10 | 0.20 | $4.0 \times 10^{-5}$ |
| 3 | 0.20 | 0.10 | $16.0 \times 10^{-5}$ |

2) In the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, if the $\mathrm{K}_{\mathrm{C}}=9.60$ at 573 K , then calculate
3) the Kp at this temperature ( 4 pts .).
4) Calculate the pOH of a solution if 1.35 moles of HI is in 530.00 mL of water. ( 6 pts.)
5) Activation energies of reactions, $E_{a}$, are frequently found graphically. The Arrhenius equation: $\ln (\mathrm{k})=\left(-\mathrm{E}_{\mathrm{a}}\right) / \mathrm{RT}+\ln (\mathrm{A})$ is used. Values of k , the rate constant, are measured at various temperatures, then $\ln \mathrm{k}$ and $1 / \mathrm{T}$ are calculated and plotted. In one particular experiment the slope of the st. line (obtained by plotting $\ln (\mathrm{k})$ and $1 / \mathrm{T}$ ) was found to be -30000 K . Calculate the energy of activation (in calories) of the reaction (6 pts.):
6) Equilibrium was established when a mixture of 0.20 mol of $\mathrm{NO}(\mathrm{g}), 0.10 \mathrm{~mol} \mathrm{of} \mathrm{H}_{2}(\mathrm{~g})$, and 0.20 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is placed in a $2.0-\mathrm{L}$ vessel at 400 K . The equilibrium reaction is : $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$ $\longleftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. If at equilibrium $[\mathrm{NO}]=0.062 M$, then calculate $\mathrm{K}_{\mathrm{p}}$. (10 pts.)
7) $\qquad$  )
8) $\qquad$
9) Ammonia is a weak base with $\mathrm{pKb}=4.74$ at $25^{\circ} \mathrm{C}$. Calculate the pH of a 0.2 M ammonia solution in water at that temperature ( 8 pts .).
10) Calculate the pH of a buffer solution that contains 0.820 grams of sodium acetate and 0.01 moles of acetic acid in 100 ml of water. The Ka of acetic acid is $1.77 \times 10^{-5}$ (8 pts).
11) $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water at $20^{\circ} \mathrm{C}$ is $1.9 \times 10^{-12} \mathrm{M}$. Calculate it's solubility in gram per
12) 0.1 L of solution (8 pts.).
13) Calculate the molar solubilty of $\mathrm{CaF}_{2}$ at $25^{\circ} \mathrm{C}$ in a solution that is 0.010 M in $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$. 9)

Ksp for $\mathrm{CaF}_{2}=3.9 \times 10^{-11}$. Show your calculation with ICE chart. (8 pts.)

## MULTIPLE CHOICE. On your scantron, start answering from number as the question number. Select the one alternative that best completes the statement or answers the question (3 pts each).

10) The rate of a reaction depends on $\qquad$ .
11) $\qquad$
A) collision energy
B) collision orientation
C) collision frequency
D) all of the above
E) none of the above
12) A catalyst can increase the rate of a reaction $\qquad$ .
13) 

A) by providing an alternative pathway with a lower activation energy
B) by changing the value of the frequency factor (A)
C) by increasing the overall activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of the reaction
D) by lowering the activation energy of the reverse reaction
E) All of these are ways that a catalyst might act to increase the rate of reaction.
12) How does the reaction quotient of a reaction $(Q)$ differ from the equilibrium constant $\left(K_{e q}\right)$ of the
12) same reaction?
A) K does not depend on the concentrations or partial pressures of reaction components.
B) $Q$ is the same as $K_{e q}$ when a reaction is at equilibrium.
C) Q does not depend on the concentrations or partial pressures of reaction components.
D) $K_{e q}$ does not change with temperature, whereas $Q$ is temperature dependent.
E) $Q$ does not change with temperature.
13) The equilibrium constant for reaction 1 is $K$. The equilibrium constant for reaction 2 is
13) —.
(1) $\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
(2) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
A) $1 / 2 \mathrm{~K}$
B) $K^{2}$
C) $-K^{2}$
D) 2 K
E) $1 K^{2}$
14) The reaction below is exothermic:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Le Châtelier's Principle predicts that $\qquad$ will result in an increase in the number of moles of $\mathrm{SO}_{3}(\mathrm{~g})$ in the reaction container.
A) removing some oxygen
B) increasing the pressure
C) increasing the volume of the container
D) decreasing the pressure
E) increasing the temperature
15) The equlibrium reaction $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})($ Pink $)+4 \mathrm{Cl}^{-}(\mathrm{aq}) \ll \mathrm{CoCl}_{4}{ }^{2-}(\mathrm{aq})$ (Blue) $+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ turns pink when placed in ice water mixture but turns blue in hot water. The reaction, as shown, is:
A) Nonthermic
B) Endothermic
C) Exothermic
D) Insufficient data
16) In which of the following aqueous solutions does the weak acid exhibit the highest percentage ionization?
A) $0.01 \mathrm{M} \mathrm{HClO} \quad\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
B) $0.01 \mathrm{M} \mathrm{HNO}_{2} \quad\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
C) $0.01 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad\left(\mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
D) $0.01 \mathrm{M} \mathrm{HF} \quad\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
E) These will all exhibit the same percentage ionization.
17) Which of the following aqueous solutions has the highest $\left[\mathrm{OH}^{-}\right]$?
17)
A) a solution with a pOH of 12.0
B) a $1 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{NH}_{4} \mathrm{Cl}$
C) a $1 \times 10^{-4} \mathrm{M}$ solution of $\mathrm{HNO}_{3}$
D) a solution with a pH of 3.0
E) pure water
18) A 0.1 M aqueous solution of $\qquad$ will have a pH of 7.0 at $25.0^{\circ} \mathrm{C}$.
18)

$$
\mathrm{NaOCl} \quad \mathrm{KCl} \quad \mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{Ca}(\mathrm{OAc})_{2}
$$

A) NaOCl
B) KCl
C) $\mathrm{NH}_{4} \mathrm{Cl}$
D) $\mathrm{Ca}(\mathrm{OAc})_{2}$
E) KCl and $\mathrm{NH}_{4} \mathrm{Cl}$
19) Which one of the following pairs cannot be mixed together to form a buffer solution?
19)
A) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{HCl}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}=\right.$acetate $)$
B) $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
C) $\mathrm{KOH}, \mathrm{HF}$
D) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{KH}_{2} \mathrm{PO}_{4}$
E) $\mathrm{RbOH}, \mathrm{HBr}$
20) In which of the following aqueous solutions would you expect AgCl to have the lowest solubility?
20)
A) $0.020 \mathrm{M} \mathrm{BaCl}_{2}$
B) pure water
C) $0.020 \mathrm{AgNO}_{3}$
D) 0.020 KCl
E) 0.015 NaCl

TRUE/FALSE. On the scantron, select answer ' $A$ ' if the statement is true and ' $B$ ' if the statement is false ( 3 pts each).
21) Units of the rate constant of a reaction are independent of the overall reaction order.

T or F
22) In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants.
23) $\mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are considered an acid-base conjugate pair.

T or F
24) For any buffer system, the buffer capacity depends on the amount of acid and base from which the buffer is made.
25) The effect of a catalyst on a chemical reaction is to react with product, effectively removing it and T or F shifting the equilibrium to the right.

