

KEY

MC, Chem1B, Sp 15, Test1

Read questions carefully to understand what is being asked. If you have doubt, do ask your instructor. Use the reverse side o your answer paper as scratch. Use attached periodic table and important constants chart. On your scantron, please start from number 11 to answer the multiple choice questions. (Total pts. = 84 + 36 + 12 = 132)

SHORT ANSWER: Be clear in your answer. Show all your calcualtions using appropriate set up and units.

1) Draw the Lewis structure, electronic geometry and then write the hybridization of the central atom next to the following compounds (3x6 = 18 pts):

1)

(a)
$$804^{2}$$
-
 $6+6\times4=32e$
 $\frac{24}{8}$
 $0:0:$

(a) \$042-6+6x4=32e +2-24 0-5-0 AX4 - Tetrahedral - Sp3

(b)
$$13^{-}$$

$$7 \times 3 + 1 = 22 e$$

$$\frac{4}{18}$$

$$\frac{1}{18}$$

$$\frac{1}{6}$$

(b) 13
7x3+1=22e [: T-I-I:] AX2E3 - Trigonal hipyramidal - Sp3d

(Linear)

(c) PCI₅ : CI: CI: AX5 - Trigonal bipyramidal - Sp³d

5+7x5=40e⁻³⁰ : CI: CI: CI: AX5

2) Draw skeletal or condensed structures next to the names (2x5 = 10pts.):

(a) trans-2,3-dimethyl-3-hexene

(b) 1,2-Dimethylcyclopentane

3) Write the systematic (IUPAC) name next to the following structures (2x3 = 6pts.).

3)

$$\begin{array}{c|c} H_2 \\ H_2C \\ CH_2 \\ H_2C \\ CH_2 \\ CH_2 \\ CH_2 \end{array}$$

4) (a) Show the structure(s) of the product(s) of the following reaction (5 pts) and (b) name what kind of reaction is this (2 pts):

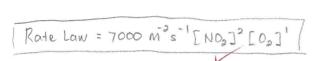
4)

$$n CICO(CH_2)_4COCI + 2n H_2N(CH_2)_6NH_2 ----->$$

5) Draw the condensed structures of the reactants and product(s) of the reaction between propionic acid and 1-propanol (9 pts.) and name the major product (2 pts.) and the functional group it conatins (2 pts.).

- 6) The following experimental data were obtained at constant temperature for the reaction:

$2NO(g) + O_2(g)$	> $2 \text{ N0}_2(g)$
-------------------	-----------------------


Initial Concentrations			Initial Rate
Experiment	[NO]	[O2]	$(M s^{-1})$
17	0.0010	0.0010	7.0 x 10-6
2	0.0010	0.0020	1.4 x 10-5
3 1	0.0010	0.0030	2.1x 10-5
4	0.0020	0.0030	8.4 x 10-5
5	0.0030	0.0030	1.9 x 10 -4

a. Calculate the order of the reaction with respect to each rea

1.9 x 10 -4	Rate = K [NO] " [O]"
actant (6 pts.).	x[0.0020] [0.0030] 8.4×10-5
Rate 3	E[0.0010]3 [0.0030]3 = 2.1×10-5
	2 = 4
	m=2

- Rate 2 = $\frac{\text{K}[N0]_{2}^{\text{M}}[0_{2}]_{2}^{\text{n}}}{\text{Rate 1}}$ | $\frac{\text{K}[N0]_{1}^{\text{m}}[0_{2}]_{1}^{\text{n}}}{\text{K}[N0]_{1}^{\text{m}}[0_{2}]_{1}^{\text{n}}}$ | $\frac{\text{Rate 2}}{\text{Rate 1}}$ | $\frac{\text{K}[0_{1}0010]_{2}^{\text{m}}[0_{1}0010]_{1}^{\text{n}}}{\text{K}[0_{1}0010]_{1}^{\text{n}}}$ | $\frac{1.4 \times 10^{-5}}{7.0 \times 10^{-6}}$

b. Write the rate law for the reaction (3 pts.). Rate =
$$KENO_{3}^{2}EO_{2}^{1}$$

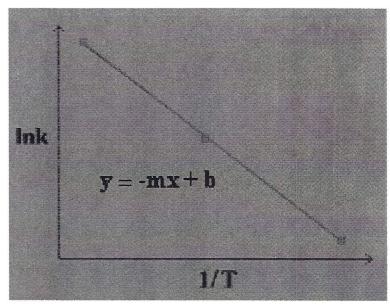
 $K = \frac{7.0 \times 10^{-6}}{(6.00 \text{ M})^{2}(0.00 \text{ M})^{1}} = \frac{7.0 \times 10^{-6}}{1 \times 10^{-9}}$
Rate Law = $7000 \text{ M}^{2}\text{s}^{-1}ENO_{3}^{2}EO_{2}^{1}$ $K = 7000 \text{ M}^{-2}\text{s}^{-1}$

7) The reaction 2NO(g) + O2 (g) ----> 2 NO2(g) is 2nd order in [NO2] at 300°C with k = 0.543 M⁻¹ s⁻¹; If in a closed container, the initial concentration of NO₂ = 0.05 M, then calculate the concentration of NO_2 after half an hour at that temperature (6

pts.). [Note: For 2nd order kinetics:
$$1/[A]_t = k \cdot t + 1/[A]_0$$
]

 $k = 0.543 \text{ m}^{-1} \text{ s}^{-1} \text{ [NO_2]}_0 = 0.05 \text{ M}$
 $[NO_3]_t \text{ after 30 mins?} \qquad t = 0.5 \text{ M} \times \frac{3600 \text{ s}}{1 \text{ m}} = 1800 \text{ s}$
 $L = k \cdot t + L = 1.00 \text{ mins?} \times \frac{3600 \text{ s}}{1 \text{ m}} = 1800 \text{ s}$
 $L = k \cdot t + L = 1.00 \text{ mins?} \times \frac{3600 \text{ s}}{1 \text{ m}} = 1800 \text{ s}$
 $L = (0.543 \text{ m}^{-1} \text{ s}^{-1})(1800 \text{ s}) + \frac{1}{(0.05 \text{ m})}$
 $L = (0.543 \text{ m}^{-1} \text{ s}^{-1})(1800 \text{ s}) + 20$
 $L = (0.543 \text{ m}^{-1} \text{ s}^{-1})(1800 \text{ s}) + 20$

$$\frac{1}{(A)_{t}} = 997.4$$


$$EA]_{t} = .601 \text{ or } 1.003. \times 10^{-3} \text{ M}$$

8) Acti	vation	energies	of reactions,	Ea,	are frequen	tly found	graphically.	The
Arrh	nenius	equation:						

8)

$$\ln (k) = ((-E_a))/RT + \ln(A)$$

is used. Values of k, the rate constant, are measured at various temperatures, then $\ln k$ and 1/T are calculated and plotted.

In one particular experiment the, co-ordinates of two points: one at upper left is A(.0013,-3.8) and the other at lower right is B(0.0017,-12.8). Using this information:

(a) Calculate the slope of the st. line (4 pts.)

Slope =
$$\frac{Ay - By}{Ax - Bx} = \frac{-3.8 - (-12.8)}{.0013 - 0.0017} = \frac{9}{-4 \times 10^{-4}}$$

Slope = -22500

(b) Calculate the energy of activation of the reaction (Ea) in calories (6 pts.)

In
$$k = -\frac{Ea}{R}$$
, $\frac{1}{T} + \ln A$ $-Ea = slope(R)$

slope

 $-Eq = (-22506)(8.314 \text{ J/k mol})$ $-Ea = -186975$
 $Ea = 1.870 \times 10^5 \text{ J/k mol} \times \frac{1 \text{ cal}}{4.184 \text{ j}}$
 $Ea = 44709.6 \text{ cal}$

(9) If a rate law is ser rate (4 pts.).	cond order (reactant) ,	doubling the reacta	(increase)	reaction 9) _	
			0	activation en	ergy	
10	0) The minimum er	nergy to initiate a chem	ical reaction is the	(2 pts.).	10)	
MULTI	PLE CHOICE. Star	rt on line 11 of your sc	antron paper. Selec	et the one alternativ	ve that best complet	tes the
		uestion (3 pts each).	ICI		1	
1	1) The electron-do	main geometry and mo ectively. trigonal planar	lecular geometry o	f iodine trichloride	are and	11) 0
	, resp	ectively.		TME	gonal bipyran	iidal
	B) tetrahedral	, trigonal pyramidal		T	-shaped	
	C) octahedral,	trigonal planar				
		oyramidal, T-shaped oyramidal, trigonal pla	nar			
			0			
1:	2) The F-B-F bond	angle in the BF3 molec	cule is			12) B
	A) 109.5°	B) 120°	C) 180°	D) 90°	E) 60°	- Contract of the Contract of
	0) A	b d.abb.!	ah ankitala an kuan	to a stance according t	- 4h - fa4: f	10\ D
1	the bond in Br ₂ ?	ence bond theory, whi	ch orbitals on brom	ine atoms overlap i	n the formation of	13)
	A) 3s	B) 3p	C) 4s	(D) 4p	E) 3d	
			न न न			
1	4) The total number	r of π bonds in the H $-$ B) 4	C=C-C=C-C=N m	olecule is	 E) 12	14)
	A) 3	D) 4	(0) 6	D) 9	E) 12	
- 1	5) The Lewis struct	ure of carbon monoxid	e is given below. T	he hybridizations o	f the carbon and	15) C
	oxygen atoms in	carbon monoxide are	and	, respective	ly.	
	: C ≡ O	•				
	. 0 = 0	•				
	A) sp, sp3	B) sp3, sp2	C) sp, sp	D) sp2, sp3	E) sp ² , sp ²	
1	6) The compound b	oelow is an				16)
		н н				
	Н—С	≡ C — C—H				
		11 11				
	A) olefin					
	B) alkane C) alkyne					
	D) alkene					
	F) aromatic co	omnound				

enantio mers 17) Optically active molecules that are mirror images of each other are called	17)	E
A) cofactors B) chiral compounds	•	
C) allotropes		
D) geometrical isomers		
E) enantiomers		
18) The addition of HBr to 2-butene produces	18)	B
A) 110 Todation		^
B) 2-bromobutane C) 2,3-dibromobutane		
D) 1-bromobutane		
E) 1,2-dibromobutane		
19) Which substance in the reaction below either appears or disappears the fastest?	19)	A
$4N H_3 + 70_2 \rightarrow 4N O_2 + 6H_2O$		
(A) 02		
B) N H ₃		
C) H ₂ O	171	
D) NO₂E) The rates of appearance/disappearance are the same for all of these.		
E) The lates of appearance/ulsappearance are the same for all of these.		
20) Consider the following reaction:	20)	A
A →2C		
The average rate of appearance of C is given by $\Delta [C]/\Delta t$. Comparing the rate of appearance of C		
and the rate of disappearance of A, we get $\triangle[C]/\triangle t = \underline{\hspace{1cm}} \times (-\triangle[A]/\triangle t)$. A) +2 B) +1 C) -1/2 D) -1 E) +1/2		
21) If the rate law for the reaction $k [A][B]^2$	21)	B
2A + 3B →products		
is first order in A and second order in B, then the rate law is rate =		
A) $k[A]^2[B]^3$ B) $k[A][B]^2$ C) $k[A]^2[B]^2$ D) $k[A]^2[B]$ E) $k[A][B]$		
ty_2 = 0.69322) The half-life of a first-order reaction is 13 min. If the initial concentration of reactant is 0.085 M, it takes min for it to decrease to 0.055 M. B) 0.048 C) 3.6 D) 11 E) 8.4 $k = 0.053$ $k = 0.053$ $k = 0.053$	22)	A
takes min for it to decrease to 0.055 M.		
13 mins = 0.693 A) 0.2 B) 0.040 C) 3.0 D) 11 E) 8.4		
K K = 0.053		
t= 8.20 InCAJt = -Kt + InLAJO		

Pilita Rejano

TRUE/FALSE. In your scantron, fill up bubble A for true and bubble B for false answers (3 pts/question). 23) Hybridization is the process of mixing atomic orbitals as atoms approach each other to form a bond. 24) A carbon with three or more attached groups will be chiral. False 25) The half-life for a first order rate law depends on the starting concentration. False 26) Units of the rate constant of a reaction are independent of the overall reaction order. False 26) B