Read questions carefully before answering. No outside paper is allowed. Write **set up equation** for a mathematical problem, then put the raw data with **units**, before showing the calculation. Use the reverse side of your answer paper as scratch. Use the periodic table and important constants charts provided. (Total points = 62 + (17*3=)51 = 113).

Show your calculation with set up and units (when appropriate)

1) In the reaction N₂ (g) + 3 H₂ (g) \leftrightarrow 2 NH₃ (g), if the K_C = 9.60 at 573 K, then calculate the Kp at this temperature (4 pts.).

1) 4.34×10-3

$$Kp = 9.6(0.082) \times 573^{(2-4)}$$

$$Kp = 4.34 \times 10^{-3}$$

2) Equilibrium was established when a mixture of 0.20 mol of NO(g), 0.10 mol of H₂(g), and 0.20 mol of H₂O(g) is placed in a 2.0-L vessel at 400 K. The equilibrium reaction is : 2 NO(g) + 2 H₂(g) <---> N₂(g) + 2 H₂O(g). If at equilibrium [NO] = 0.062 M, then calculate K_P. (10 pts.)

2) 19.91

[Nz]eg=0.019

0.2mol +20(g)

$$2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$$

$$0.1 \quad 0.05 \quad \emptyset \quad 0.1$$

$$0. -2x \quad -2x \quad +x \quad +2x$$

$$E \quad 0.1-2x \quad 0.05-2x \quad x \quad 0.1+2x$$

$$[No]_{eq} = 0.062 = 0.1-2x \quad \rightarrow 2x = 0.038 \Rightarrow x = 0.019$$

$$[H_2]_{eq} = 0.05-2(0.019) = 0.012 \quad \text{Kp} = \text{Kc}(RT)$$

 $KC = \frac{[H_20]^2[N_2]}{[N0]^2[H_2]^2}$ $KC = \frac{(0.138)^2(0.019)}{(0.002)^2(0.012)^2}$ $KC = \frac{(0.53.68)}{(0.053.68)}$

 $\Rightarrow \chi = 0.019$ $K_{p} = K_{c}(RT)\Delta n$

 $K_{p} = K_{c}(R_{1})$ $K_{p} = (853.68(0.082) \times 400)^{3-4}$ $K_{p} = (9.9)$

3) [butanc] = 0.9 M 3) In the equilibrium rxn. Butane $(g) \leftrightarrow \text{Isobutane } (g)$, assume equilibrium has reached [bartane] = in a 1.0 L flask with [Butane] = 0.5 M and [Isobutane] = 1.23 M at 298 K. The equlibrium constant for the reaction = 2.5 and afterwards 1.5 mol of Butane was added to the mixture. Calculate the new values of [Butane] and [Isobutane] when Keg= 2.5 = [wobutane] equilibrium was reestablished (8 pts.)? I butane (g) = isobutane (g) - $\frac{1.25+x}{2.5} = \frac{1.25+x}{2-x}$ [butane] = 2-1.1 = [0,9M=[butane]] 5-2.5x=1.23+x [usbutane = 1.23+1.1=2.33M= [usbutane] 3.5x=3.774) Calculate the pH of a solution if 1.35 moles of NaOH is in 530.00 mL of water. (8 pts.) 4) 4.40 1.35 moles /0.53 L = 2.5M NaOH NaOH = strong par, so [NaOH] = [OH] = 2.5M pol+ = -109 (2.5) -> pol+ = -0.40 pH=14-pOH -> pH=14-(-0.40) -> pH=14.40 5) What is the pH and the pOH of a 0.050M HClO; Ka of HClO is 3.5x10⁻⁸. Show your calculation

with ICE chart (if necessary) (6+2-8 pts.) with ICE chart (if necessary). (6+2 = 8 pts.)HCLO + H20 = CLO $K_{q} = \frac{[CLO^{-}][H_{3}O^{+}]}{[H.CLO]} + 3.5 \times 10^{-3} = \frac{(\chi)(\chi)}{0.05 - \chi}$ 3.5 × 10⁻⁶ × 100 = 3.5 × 10⁻⁶ × 3.5×10-8 = x = 10.05 -> 2.0×10-9 = x2 -> x=4.18×10-5=[+30+] pt=-log[H30t] -> pt=-log(4.10×10-5) -> [p+=4.38

DOH= 14- pH -> pOH= 14-4.38 -> pOH= 9.62

0.1L D. O. IM CH3COUH

6) Calculate the pH of a buffer solution that contains 0.820 grams of sodium acetate and 0.01 6) moles of acetic acid in 100 ml of water. The Ka of acetic acid is 1.77×10^{-5} (8 pts). 0.82 g NaCH3COU = 0.01 mil Na CH3COU _ 0.1 M NaCH3COU PH= pkat log [conj. base] - pH= pka + log 0.1M ->pH=pka pka = -log ka -> pka = -log (1.77 x10-5) -> pka = 4.75 = pH/V 7) Calculate the pH of a 0.7M NaCIO solution. For your calculation show what happens in a 7) 10.65 step wise fashion. Ka of HClO is 3.448x10-8 (8 pt.) D.7M NaCLO - O.7M Na 7 O.7M CLO-Kb= Kn - Kb= 3.448 × 10-8 CLO + H20 = CLOH + OH - $K_b = \frac{2.9 \times 10^{-7}}{[CLO^{-7}]}$ $2.9 \times 10^{-7} = \frac{G(X)}{U.7-X}$ $2.9 \times 10^{-7} \times 100 = 2.9 \times 10^{-5} < 0.7$ $\therefore \text{ reglect } \times \text{ compared to [CLO-]_initial}$ $2.9\times10^{-7} = \frac{\chi^2}{0.7} \rightarrow 2.03\times10^{-7} = \chi^2 \rightarrow \chi = 4.5\times10^{-4} = [OH-7]$ pot=-log[0H] -> pot=-log (4.5×10-4) -> pot=3.35 pH = 14- pOH -> pH= 14-3.35 -> pH= 10.65 /

8) Calculate the molar solubilty of CaF2 at 25°C in a solution that is 0.010 M in Ca(NO3)2.

Ksp for $CaF_2 = 3.9 \times 10^{-11}$. Show your calculation with ICE chart (8 pts.).

Ca (NO3)2 = Cat +2NO3 0.01M -> 0.01M 0.02M

CaF2(5) = Ca2+ + 2 F M10,0

 $Krp = EF - J^2 [Ca^{2+}] \rightarrow 3.9 \times 10^{-11} = (25)^2 (0.01 + 5)$ is reject 8 compared $3.9 \times 10^{-11} = 45^2 (0.01)$

 $3.9 \times 10^{-11} = 45^{2}(0.01) \rightarrow 3.9 \times 10^{-9} = 45^{2} \rightarrow 9.75 \times 10^{-10} = 5^{2}$ $S = 3.12 \times 10^{-5} \text{ mol } / 0.1 \text{ L}$

MULTIPLE CHOICE. On your scantron, start answering from number 9. Select the one alternative that best completes the statement or answers the question (3 pts each).

- 9) As the temperature of a reaction is increased, the rate of the reaction increases because the
- A) reactant molecules collide less frequently and with greater energy per collision
- B) activation energy is lowered
 - C) reactant molecules collide more frequently and with greater energy per collision
- Dy reactant molecules collide less frequently
- F) reactant molecules collide more frequently with less energy per collision
- 10) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

- A) x
- B) y
- C) y x
- D) x y
- E) x + y

	11) How does the reaction quotient of a reaction (Q) differ from the equilibrium constant (K_{eq}) of the	11) 🔑
	same reaction? A) K does not depend on the concentrations or partial pressures of reaction components. B) Q is the same as K_{eq} when a reaction is at equilibrium.	
	e) Q does not depend on the concentrations or partial pressures of reaction components. D) Keq does not change with temperature, whereas Q is temperature dependent.	
	E) Q does not change with temperature.	
	12) The equilibrium constant for reaction 1 is K. The equilibrium constant for reaction 2 is	12)
= X12 - X1= - X1=	(1) $SO_2(g) + (1/2) O_2(g) \Rightarrow SO_3(g)$ (2) $2SO_3(g) \Rightarrow 2SO_2(g) + O_2(g)$ (2) $2SO_3(g) \Rightarrow 2SO_2(g) + O_2(g)$ (3) $2SO_2(g) \Rightarrow 2SO_2(g) + O_2(g)$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (8) $1/2K$ (9) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (9) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (6) $1/2K$ (7) $1/2K$ (8) $1/2K$ (8) $1/2K$ (9) $1/2K$ (9) $1/2K$ (9) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (1) $1/2K$ (2) $1/2K$ (3) $1/2K$ (4) $1/2K$ (5) $1/2K$ (7) $1/2K$ (8) $1/2K$ (8) $1/2K$ (9) $1/2K$ (
12	A) 1/2K B) K ² C) - K ² D) 2K E) 1/K ²	
= 41	13) The reaction below is exothermic: gives of heat	13) 🚨
	$2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{3}(g) + \triangle H$	
	Le Châtelier's Principle predicts that will result in an increase in the number of moles of SO ₃ (g) in the reaction container. A) removing some oxygen	
	C) increasing the volume of the container $\rightarrow \sqrt{30}$ 3	
	D) decreasing the pressure → ↓ 503 E) increasing the temperature → ↓ 503	
		0
	14) The equilibrium reaction $Co(H_2O)_6^{2+}$ (aq) (Pink) + 4 Cl ⁻ (aq) <-> $CoCl_4^{2-}$ (aq) (Blue) + 6 $H_2O(I)$	14) 💆
	turns pink when placed in ice water mixture but turns blue in hot water. The reaction, as shown, is:	
	is: A) Nonthermic C) Exothermic B) Endothermic D) Insufficient data Pink + Neat ⇒ Blue 1 Neat: → blue	nE
	PINK + heat = Blue 1 heat: > blue	
	15) In which of the following aqueous solutions does the weak acid exhibit the highest percentage ionization?	15)
	$A) 0.01 \text{ M H CIO} (K_a = 3.0 \times 10^{-8})$	
	B) 0.01 M H N O ₂ $(K_a = 4.5 \times 10^{-4})$	
	\mathcal{C}) 0.01 M HC ₂ H ₃ O ₂ (K _a = 1.8 × 10 ⁻⁵)	

(D) 0.01 M HF $(K_a = 6.8 \times 10^{-4})$

E) These will all exhibit the same percentage ionization.

	16) Which of the following aqueous solutions has the highest [OH-]? AY a solution with a pOH of 12.0	16)
	(B) a 1 \times 10 ⁻³ M solution of N H ₄ Cl	
	\sim C) a 1 \times 10 ⁻⁴ M solution of HNO ₃	
	D) a solution with a p H of 3.0 E) pure water	
	17) A 0.1 M aqueous solution of will have a pH of 7.0 at 25.0 °C.	17) 🗵
	NaOCI KCI NH4CI Ca(OAc)2	
	A) NaOCI B) KCI C) NH4CI	
	B) Ca(O Ac)2 E) KCI and NH4CI	
	Ly Korana Wilder	
	18) Which one of the following pairs <u>cannot</u> be mixed together to form a buffer solution? A) NaC ₂ H ₃ O ₂ , HCl (C ₂ H ₃ O ₂ ⁻ = acetate) B) NH ₃ , NH ₄ Cl	18)
	CY KOH, HF	
	D) H3PO4, KH2PO4	
	E) RbOH, HBr	
TRU	E/FALSE. On the scantron, select answer 'A' if the statement is true and 'B' if the statement is false (3 p	ets each).
	19) H ₂ SO ₃ and H ₂ SO ₄ are considered an acid-base conjugate pair.	T or F
	20) The conjugate base to HSO4 ⁻ is SO4 ²⁻ .	Tor F
	21) The extent of ionization of a weak electrolyte is increased by adding to the solution a strong electrol that has an ion in common with the weak electrolyte.	yte ToF
	22) The solubility product of a compound is numerically equal to the product of the concentration of the ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.	
	23) At constant temperature, reducing the volume of a gaseous equilibrium mixture causes the reaction shift in the direction that increases the number of moles of gas in the system.	to T of F
	24) In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants. (eactant(s) = product(s) + heat	Tor F
	25) The solubility of slightly soluble salts containing basic anions is proportional to the pH of the solution	on. Tor