\qquad
Read questions carefully before answering. No outside paper is allowed. Write set up equation for a mathematical problem, then put the raw data with units, before showing the calculation. Use the reverse side of your answer paper as scratch. Use the periodic table and important constants charts provided. (Total points $=$ $62+(17 * 3=) 51=113)$.

Show your calculation with set up and units (when appropriate)

1) In the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, if the $\mathrm{K}_{\mathrm{C}}=9.60$ at 573 K , then calculate the Kp at this temperature (4 pts .).
2) \qquad
3) Equilibrium was established when a mixture of 0.20 mol of $\mathrm{NO}(\mathrm{g}), 0.10 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$, and 0.20
4) mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is placed in a $2.0-\mathrm{L}$ vessel at 400 K . The equilibrium reaction is: $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$ $\longleftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. If at equilibrium $[\mathrm{NO}]=0.062 M$, then calculate K_{p}. (10 pts.)
5) In the equilibrium rxn. Butane (g) \leftrightarrow Isobutane (g), assume equlibrium has reached
6) \qquad in a 1.0 L flask with [Butane] $=0.5 \mathrm{M}$ and [Isobutane] $=1.23 \mathrm{M}$ at 298 K . The equlibrium constant for the reaction $=2.5$ and afterwards 1.5 mol of Butane was added to the mixture. Calculate the new values of [Butane] and [Isobutane] when equilibrium was reestablished (8 pts.)?
7) Calculate the pH of a solution if 1.35 moles of NaOH is in 530.00 mL of water. (8 pts .)
8) What is the pH and the pOH of a $0.050 \mathrm{M} \mathrm{HClO} ; \mathrm{Ka}$ of HClO is 3.5×10^{-8}. Show your calculation with ICE chart (if necessary). ($6+2=8$ pts.)
9) Calculate the pH of a buffer solution that contains 0.820 grams of sodium acetate and 0.01
10)

moles of acetic acid in 100 ml of water. The Ka of acetic acid is 1.77×10^{-5} (8 pts).
7) Calculate the pH of a 0.7 M NaClO solution. For your calculation show what happens in a 7) stepwise fashion. Ka of HClO is 3.448×10^{-8} (8 pt .)
8) Calculate the molar solubilty of CaF_{2} at $25^{\circ} \mathrm{C}$ in a solution that is 0.010 M in $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
8)

Ksp for $\mathrm{CaF}_{2}=3.9 \times 10^{-11}$. Show your calculation with ICE chart (8 pts.).

MULTIPLE CHOICE. On your scantron, start answering from number 9. Select the one alternative that best completes the statement or answers the question (3 pts each).
9) As the temperature of a reaction is increased, the rate of the reaction increase because the
9) \qquad
A) reactant molecules collide less frequently and with greater energy per collision
B) activation energy is lowered
C) reactant molecules collide more frequently and with greater energy per collision
D) reactant molecules collide less frequently
E) reactant molecules collide more frequently with less energy per collision
10) Which energy difference in the energy profile below corresponds to the activation energy for the
10) \qquad forward reaction?

A) x
B) y
C) $y-x$
D) $x-y$
E) $x+y$
11) How does the reaction quotient of a reaction (Q) differ from the equilibrium constant $\left(K_{e q}\right)$ of the same reaction?
A) K does not depend on the concentrations or partial pressures of reaction components.
B) Q is the same as $K_{e q}$ when a reaction is at equilibrium.
C) Q does not depend on the concentrations or partial pressures of reaction components.
D) $K_{e q}$ does not change with temperature, whereas Q is temperature dependent.
E) Q does not change with temperature.
12) The equilibrium constant for reaction 1 is K. The equilibrium constant for reaction 2 is
12) \qquad
(1) $\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
(2) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
A) $1 / 2 \mathrm{~K}$
B) K^{2}
C) $-K^{2}$
D) 2 K
E) $1 K^{2}$
13) The reaction below is exothermic:
13) \qquad

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Le Chatelier's Principle predicts that \qquad will result in an increase in the number of moles of $\mathrm{SO}_{3}(\mathrm{~g})$ in the reaction container.
A) removing some oxygen
B) increasing the pressure
C) increasing the volume of the container
D) decreasing the pressure
E) increasing the temperature
14) The equlibrium reaction $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})$ (Pink) $+4 \mathrm{Cl}^{-}$(aq) $<>\mathrm{CoCl}_{4}{ }^{2-}$ (aq) (Blue) $+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ turns pink when placed in ice water mixture but turns blue in hot water. The reaction, as shown, is:
A) Nonthermic
B) Endothermic
C) Exothermic
D) Insufficient data
15) In which of the following aqueous solutions does the weak acid exhibit the highest percentage
14) \qquad
en er
16) Which of the following aqueous solutions has the highest $\left[\mathrm{OH}^{-}\right]$?
16)
A) a solution with a pOH of 12.0
B) a $1 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{NH}_{4} \mathrm{Cl}$
C) a $1 \times 10^{-4} \mathrm{M}$ solution of HNO_{3}
D) a solution with a pH of 3.0
E) pure water
17) A 0.1 M aqueous solution of \qquad will have a pH of 7.0 at $25.0^{\circ} \mathrm{C}$.
17)
$\begin{array}{lllll}\mathrm{NaOCl} & \mathrm{KCl} & \mathrm{NH}_{4} \mathrm{Cl} & \mathrm{Ca}(\mathrm{OAc})_{2}\end{array}$
A) NaOCl
B) KCl
C) $\mathrm{NH}_{4} \mathrm{Cl}$
D) $\mathrm{Ca}(\mathrm{OAc})_{2}$
E) KCl and $\mathrm{NH}_{4} \mathrm{Cl}$
18) Which one of the following pairs cannot be mixed together to form a buffer solution?
18)
A) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{HCl}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}=\right.$acetate $)$
B) $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
C) $\mathrm{KOH}, \mathrm{HF}$
D) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{KH}_{2} \mathrm{PO}_{4}$
E) $\mathrm{RbOH}, \mathrm{HBr}$

TRUE/FALSE. On the scantron, select answer ' A ' if the statement is true and ' B ' if the statement is false (3 pts each).
19) $\mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are considered an acid-base conjugate pair.
20) The conjugate base to HSO_{4}^{-}is $\mathrm{SO}_{4}{ }^{2-}$.
21) The extent of ionization of a weak electrolyte is increased by adding to the solution a strong electrolyte that has an ion in common with the weak electrolyte.
22) The solubility product of a compound is numerically equal to the product of the concentration of the ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.
23) At constant temperature, reducing the volume of a gaseous equilibrium mixture causes the reaction to T or F shift in the direction that increases the number of moles of gas in the system.
24) In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants.
25) The solubility of slightly soluble salts containing basic anions is proportional to the pH of the solution. T or F

