Chem1B, Spring16, MC, FinalTest

Read the questions carefully to understand it, before answering on the question paper. Write clearly and concisely. **Write set-up equation**, **then put the raw numbers with units before doing your calculation**. Use the reverse side of your answer paper as scratch. Ask your instructor if you don't understand anything. A periodic table & some formulas are on the back. (Total pts.= 64 + (3*28=) 84 = 148).

SHORT ANSWER. To get full points, show all your work in details with set up equation and units.

1) The molecule 2-chloro-4-methylhexane, the product, is made by addition of HCl to an alkene, the reactant . Write a balanced chemical equation using condensed or skeleton structures of the reactants (3 pts.) and products (3 pts.) for this reaction. Also name the reactant (3 pts.) (10 pts. tot.).

1) _____

2) 250mL of a buffer of pH 12.25 was made by dissolving Na₂HPO₄ and Na₃PO₄ in water. A buffer constitutes a weak acid and its conjugate base. Which is the acid here (1 pts.) and which is the conjugate base (1 pts.). Write the formula you would use to calculate the pH of the buffer (1 pt.). If the concentration of Na₃PO₄ is 0.4 M, what mass (in grams) of Na₂HPO₄ is present in that 250mL buffer. ($K_{a3} = 4.2 \times 10^{-13}$) (8 pts.)

2) _____

Acicl HPO₄ - conjugate hase:
$$PO_4^{3-}$$
 | $PKa = -log Ka_3$ | $PVa = -log A.2 \times 10^{-13}$ |

MNa, HPO4 = 0.135 mol x 42 g/av1= 19.17 9

3) Equilibrium was established when a mixture of 0.20 mol of NO(g), 0.10 mol of H₂(g), and 0.20 mol of H₂O(g) is placed in a 2.0-L vessel at 400 K. The equilibrium reaction is : 2 NO(g) + 2 H₂(g) \rightarrow N₂(g) + 2 H₂O(g). If at equilibrium [NO] = 0.062 M, then calculate K_p.(8 pts)

$$N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$2 N_2(g) + 2 H_2O(g). \text{ If at equilibrium [NO]} = 0.062 \text{ M, then calculate } K_P.(8 \text{ pts})$$

$$\frac{2 \times 10 \, (g)}{1} + \frac{2 \times 1 \, (g)}{1} = \frac{12 \times 10 \, (g)}{1} + \frac{12 \times 10 \, (g)}{1} + \frac{12 \times 10 \, (g)}{1} = \frac{0.1 \, M}{1}$$

$$\frac{1}{1} = \frac{0.10}{1} = \frac{0.10}{20} = \frac{0.10}{20} = \frac{12}{1} \times \frac{12}{1} \times$$

- 4) The amount of fissionable material necessary to maintain a chain reactions is called the _____ . (2 pts)
- 4) Critical Mass

3) [9.9

[NO] = 0.26

- 5) What is the coordination number of the iron atom in CaNa[Fe(CN)6] (2 pts.)?

6) The most common coordination numbers are _____ (4 pts.).

- 6)486
- 7) Calculate the nuclear binding energy (Joules/Nucleon) of Helium-4 nucleus. (Given: Mass of a helium nucleus = 4.0015 amu; Mass of a proton = 1.00728 amu; Mass of a neutron = 1.00866 amu; Mass of an electron: 5.4858 x 10-4 amu). (8 pts.)

4 He --

Mass defect: Dm = 4.0015 amu - 2 x 1.00728 amu - 2 x 1.00866 amu - 0.03039 amu

$$E = mc^{2} = 0.03088 \times \frac{19 \times 10^{-3} \text{ kg}}{6.022 \times 10^{3} \text{ and}} \times \left(3.00 \times 10^{8}\right)^{2}$$

$$= \frac{2.1342 \times 10^{15} \text{ J/midion}}{4 \text{ mucleons}} = 4.534 \times 10^{-3} \text{ J/midion}$$

$$= 4.534 \times 10^{-3} \text{ J/midion}$$

2

8) Strontium-90 is a byproduct in nuclear reactors fueled by the radioisotope uranium-235. 8) The half-life of strontium-90 is 28.8 yr. What percentage of a strontium-90 sample remains after 70.0 yr (8 pts.)?

$$t_{1/2} = 28.8 \text{ yr}$$
 $t_{1/2} = \frac{0.693}{k} = 0.693$ $= 0.693$ $= 0.693$ $= 0.693$ $= 0.693$ $= 0.693$

$$\ln \frac{N_t}{N_0} = -k.t$$
=) $\frac{N_t}{N_0} = e^{-kt} = e^{-0.0241 \times 70.0} = 0.185 = 18.5\%$

9) Calculate the mass of Lithium metal produced when molten Lithium Chloride is electrolyzed in a cell with a current of 5.5x10⁴ A flowing for a period of one day. Assume the electrolytic cell is 85% efficient (6 pts.).

9) <u>290 kg</u>

ectrolytic cell is 85% efficient (6 pts.).

$$A = 5.5 \times 10^{4}$$

$$E = 0.6 \text{ clay} = 24 \times 60 \times 60 = 86400 \text{ s}$$

$$C = A \times t = 5.5 \times 10^{4} \times 86400 \text{ c} = 86400 \text{ s}$$

$$C = A \times t = 5.5 \times 10^{4} \times 86400 \text{ c} = 86400 \text{ s}$$

$$C = A \times t = 6.9419 \text{ mole} \times 6.9419 \text{ mole} \times 8526$$

10) Write d electron configuration of the metal ion (2 pts.), draw the crystal-field energy-level diagrams (to the right of the formula, 1 pt.) and show the placement of electrons (1 pts.) for the following complexes: $(2 \times 4 = 8 \text{ pts. total})$

10)

(a) $[VCl_6]^{3-}$: 3 : $[Ar]$: 45° 3d 2	11
(b) [FeF ₆] ³⁻ (a high-spin complex)	1 1

[FeF₆]³⁻ (a high-spin complex)

$$f_e^{+3}$$
: [Ar] f_e^{-3} f_e^{-3}

MULTIPLE CHOICE. On your scantron start from same bubble number as the M/C question number. Choose the one alternative that best completes the statement or answers the question (3 pts each).

11) Which	a process has $\Delta S > 0$? A) $H_2O(g) \rightarrow B$ B) $2Hg(l) + O_2(g)$ C) $CaO(s) + CO_2(g)$ D) $2Na_2O_2(s) + 2H_2O(s)$	$\rightarrow 2 HgO(s)$ $\rightarrow CaCO_3(s)$	O ₂ (g) /	11)
A)	B)	C)	D	
	a combination represents a rature? A) $\Delta H < 0$ and $\Delta S < 0$ C) $\Delta H > 0$ and $\Delta S < 0$	B) $\Delta H < 0$ and $\Delta S > 0$	is spontaneous at any $\Delta G = \Delta YI - T\Delta S$ $\Delta G = \Delta YI - T\Delta S$	12) <u>B</u>
A)	(B)	9-7 l C)	D)	
13) Which	n changes is endothermic? A) $CO_2(g) \longrightarrow CO_2(s)$ C) $CO_2(s) \rightarrow CO_2(g)$	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ \end{array}) & & & \\ & & \\ B) & & \\ CO_2(g) \rightarrow & CO \end{array}$	2(1)	13)
A)	B)	C)	D)	
14) Calcu	late ΔG^{o} for the reaction (F	S = 96,480 C/mol. e):		14) <u> </u>
3Pb -	+ 2Fe ⁺³	$3Pb^{+2} + 2Fe$	$E^{o} = 0.094 \text{ V}$	
	(A) -54 kJ B) -27 kJ C)	-18 kJ D) -9.0 kJ	$fe^{3+} + 3e \rightarrow fe$ $1b \rightarrow 1b^{2+} + 2e$	n=6
A)	B)	C) /	06 = -nFAED	
15) Which	n will shift this equilibrium	to the reactants?		15)
2NOI	Br(g) + AHO +	2NO(g) + Br2(1)	$\Delta H^{\circ} = 30 \text{ kJ. mol}^{-1}$	>0
A) decrease the temperature B) decrease the pressure C) increase [NOBr] D) add a catalyst				

A) at equal B) at equal C) it take	ilibrium [Reactants] >> ilibrium [Reactants] >> ilibrium [Reactants] << es a long time to reach of brium is reached very r	> [Products]. < [Products]. equilibrium.	K=[R] <<1	16)
A)	В)	C)	D)	
,	nd the molar concentrat	tion of the acetate i	centration of acetic acid is on is 0.55 M? K_a of acetic $PY' = P(Ca + log B)$	17)
A)	B)	C)	D)	
,	oximate pK _a of the wea	25	equivalence point	18)
A) 2.6	B) 4.5 (C) 9.2	volume of alkali added D) 13	(cm ³)	

C)

B)

A)

D)

19)	What is th	e name	of the	compound	l below?

- A) 2,4-methylbutene
- B) 2,4-ethylbutene
- (C) 2,4-dimethyl-1-pentene
- D) 2,5-dimethylpentane
- E) 2,4-dimethyl-4-pentene

- 20) Of the following, _____ is an exothermic process.
 - A) freezing
 - B) subliming
 - (C) melting
 - D) boiling
 - E) All of the above are exothermic.

21) For a first-order reaction, a plot of ______ versus _____ is linear.

A) t,
$$\frac{1}{[A]_t}$$
 B) $\frac{1}{[A]_t}$, t C) $\ln [A]_t$ $\frac{1}{t}$ D) $\ln [A]_t$ t

- E) [A]_t, t

$$3MnO_4^-$$
 (aq) + $24H^+$ (aq) + $5Fe$ (s) $\rightarrow 3Mn^2+$ (aq) + $5Fe^3+$ (aq) + $12H_2O$ (l)

A)
$$MnO_4^-$$
 (aq) + $8H^+$ (aq) + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O$ (l)

- B) Fe (s) \rightarrow Fe³⁺ (aq) + 3e⁻
- C) Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq) + e^{-}
- D) $2MnO_4^-$ (aq) + $12H^+$ (aq) + $6e^- \rightarrow 2Mn^2$ (aq) + $3H_2O$ (l)

E) Fe (s)
$$\rightarrow$$
 Fe²⁺ (aq) + 2e⁻

Table 20.2 Half-reaction	E° (V)				
$\frac{\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \to \operatorname{Cr}(s)}{\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \to \operatorname{Cr}(s)}$					
Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe (s)					
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (s)	1				
Sn^{4+} (aq) + 2e ⁻ $\rightarrow Sn^{2+}$ (aq)					
311^{-1} (aq) + $2e^{-1}$ 311^{-1} (aq)	10.134				
23) The standard cell potentia V.	al (E° _{cell}) for the	voltaic cell based	on the reaction below is	S	23) <u>D</u>
		A	t cathode Aden		
Sn^{2+} (aq) + $2Fe^{3+}$ (a	$aq) \rightarrow 2Fe^{2+} (aq)$	+ Sn ⁴⁺ (aq)			
A) +0.46 B)	-0.46	C) +1.39	E cathole Fador	E) +1.21	
24) Consider an electrochemic 2H+ (aq) + Sn (s) -	cal cell based on t	he reaction:			24)
Which of the following ac	1 4 -	.0.	red cell potential?		
A) increasing the tin (II)					
B) lowering the pH in t	the cathode comp	artment	•		
C) increasing the pressu			e compartment		
D) addition of more tin		-			
E) Any of the above wi	ill change the mea	isured cell poten	tial.		
25) Nuclei above the belt of st	tability can lower	their neutron-to	-proton ratio by	·	25) B
A) gamma emissionB) beta emission		Y.			
C) positron emission		P			
D) electron capture					
E) Any of the above pr	ocesses will lowe	r the neutron-to	-proton ratio.		
26) How many neutrons are e	emitted when a ca	alifornium-249 n	ucleus (Z=98) is bomba	rded with a	26) <u>B</u>
carbon-12 nucleus to proc	duce a $\frac{257}{104}$ Rf nuc	leus?	Cali + 60 -25	Rf +4 on	
A) one B)	four	C) zero	D) three	E) two	
27) ¹³¹ I has a half-life of 8.04 mg will remain after 13.0 A) 0.835 B)	4 days. Assuming days?	you start with a C) 0.422	1.53 mg sample of 131 +	(, how many () a & - K + E) 0.440	27)
,	1/6	1 230		·	
28) The mass of a proton is 1.		Annual Control of the Parket o			28)
(in amu) of a $\frac{60}{27}$ Co nuclei	us: (The mass of a	a Cobait-60 flucie	eus is 59.9556 airiu.)	·:	
A) 27.7830 B)	0.4827	C) 0.0662	D) 0.5489	E) 0.5405	
29) Which one of the followin	ng ions <u>cannot</u> for	m both a high sp	in and a low spin octah	edral complex	29) [4
ion?	-	_	_		-
A) Cr3+ B)	Cr ²⁺	C) Mn ³⁺		E) Fe ³⁺	3,14
(A) Cr3+ B) Cr: [Av] 4523d Cr3+ 3d3 e	§	n. +p= 4	7 2	Cr 453	13 cl \$ 3 cl 3
9+ 913 0	- D= 27	7	48 308	Mh.a	2215
CL 3, : 201	n= 033		4 3 1 3 2 3 1	ds) 201

	30) Formation of a complex species of M^{n+} metal ion with ligands often	30)	E
	A) reduces availability of the free M ⁿ⁺ ions in solution		
	B) may cause changes in the ease with which M ⁿ⁺ is reduced or oxidized		
	C) alters original physical properties of M ⁿ⁺ D) "masks" original chemical properties of both the M ⁿ⁺ ion and the ligands		
	E) all of the above		
	31) A complex that absorbs light at 700 nm will appear	31)	E
	A) yellow B) violet C) red D) orange E) green	,	
	$\sum_{i=1}^{n}$		
	32) Which one of the following substances has three unpaired d electrons?	32)	<u>C</u>
	A) [Ag(NH ₃) ₂] ⁺ B) [Zn(NH ₃) ₄] ²⁺ C) [Cr(CN) ₆] ³⁻		
	B) [Zn(NH ₃) ₄] ²⁺		
	(C) [Cr(CN)6]3-		
	D) $[V(H_2O)_6]^{4+}$		
	E) $[Cu(NH_3)_4]^{2+}$		
			^
	33) Which one of the following complexes would most likely have tetrahedral geometry?	33)	H
	A) [NiCl4] ²		
	B) [Pt(NH ₃) ₂ Cl ₂]		
	C) [Cr(NH ₃) ₆] ³⁺		
	D) $[Fe(CN)_6]^3$		
	$E) [Co(H_2O)_6]^{2+}$		
TRU	E/FALSE. Circle 'A' if the statement is true and 'B' if the statement is false (3 pts each).		
	34) Under ordinary conditions, a substance will sublime rather than melt if its triple point occurs at a	34)	
	pressure above atmospheric pressure.	ï	
	05) 77 1 1 27 6 1 1 1 1 1 1 1 1 1 1 1 1 1	25)	
	35) The solubility of slightly soluble salts containing basic anions is proportional to the pH of the solution.	35)	4
	Solution.		
	36) Rates of reaction can be positive or negative.	36)	F
		,	
	37) Transition metal complexes are colored because of the energy gap between the d orbitals.	37)	T
	38) Positron emission causes a decrease of one in the atomic number.	38)	