MC, Chem1B, Sp17, Test3

Name___

Read questions carefully to understand what is being asked, before answering. No outside paper is allowed. Use the reverse side of your answer paper as scratch. Use the important equation table and periodic table provided. (Total points = 58 + (20x3=)60 = 118).

Show your calculation first with set up equation. Then use the raw data with units in the equation in the equation and then complete the calculation.

3) The following information is available for the reaction at 25°C:

, C	CaCO ₃ (s)	-> CaO (s) + 0	CO ₂ (g)
∆G _f ° (kJ/mol)	-1129.16	-603.42	-394.36
ΔH _f ° (kJ/mol)	-1207.6	-635.09	-393.51
Sf° (J/K.mol)	91.7	38.2	213.74

(a) Calculate the Gibbs free energy change of the reaction (3pts.).

(b) Calculate the temperature in °C when the reaction will be favorable (5 pts.).

4) A nonlinear best fit plot of Keq versus Temperature (Kelvin) of tetraborate equilibrium: $Na_2B_4O_5(OH)_4 \cdot 8H_2O(s) < \longrightarrow > 2 Na^+(aq) + B_4O_5(OH)_4^{2-}(aq) + 8 H_2O(l)$ gives $\Delta H^\circ = 96 \text{ kJ/mol}$ and $\Delta S^\circ = 300 \text{ J/mol}$. From this data calculate the K_{eq} at 25° C. Show set up, raw data and units. (8 pts.)

4)

5) Given $O_2(g) + 4H^+(aq) + 4e^- --> 2 H_2O(I)$ $E_{red}O = + 1.23 V$ $Ag^+(aq) + e^- --> Ag(s)$ $E_{red}O = + 0.80 V$ For redox reaction: $4Ag(s) + O_2(g) + 4H^+(aq) --> 4 Ag^+(aq) + 2 H_2O(I)$ (i) Write the cathode reaction (2 pts.):

(ii) Write the anode reaction (2 pts.):

iii) Show set up and all your work to calculate the standard free energy change for the reaction at 25°C (4 pts.)

(iv) Show set up and all your work to calculate the equilibrium constant for the reaction at 25°C (8 pts.)

6) How many seconds are required to produce 4.00 g of aluminum metal from the electrolysis of molten AICI₃ with an electrical current of 12.0 A? Show set up and all your work. (8 pts.)

6)

following aqueous s laCl aCl2	solutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
e above following aqueous s laCl aCl ₂	olutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
e above following aqueous s laCl aCl ₂	solutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
e above following aqueous s laCl aCl ₂	olutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
following aqueous s laCl aCl2	solutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
laCl aCl ₂	olutions would you	expect PbCl ₂ to have	the lowest solubility?	0)
aCl ₂	-	· –		8)
-			-	
r				
bNO3				
CI				
. aq. HCI, its clear so . aq. NaOH, its clear . aq. NaOH, its susp conc. aq. NaOH and	olution forms a preci solution forms a pre ension dissolves. d conc. aq. HCl, its su	ecipitate. uspension dissolves.		
	•			10)
B) +1	C) +5	D) +7	E) +3	
fficient of Fe ³⁺ wher	n the following equa	tion is balanced?		11)
$Fe^{3+} \rightarrow CNO^{-} + F$	e ²⁺ (basic solut	ion)		
B) 2	C) 3	D) 4	E) 5	
	est describe(s) the be c. aq. HCl, its suspen c. aq. HCl, its clear so c. aq. NaOH, its clear c. aq. NaOH, its susp n conc. aq. NaOH and dation number of nit B) +1 efficient of Fe ³⁺ wher Fe ³⁺ → CNO ⁻ + F B) 2	est describe(s) the behavior of an amphoton c. aq. HCl, its suspension dissolves. c. aq. HCl, its clear solution forms a preci- c. aq. NaOH, its clear solution forms a preci- c. aq. NaOH, its suspension dissolves. In conc. aq. NaOH and conc. aq. HCl, its su- dation number of nitrogen in the HNO3? B) +1 C) +5 efficient of Fe ³⁺ when the following equation $Fe^{3+} \rightarrow CNO^- + Fe^{2+}$ (basic solut B) 2 C) 3	est describe(s) the behavior of an amphoteric hydroxide in wa c. aq. HCl, its suspension dissolves. c. aq. HCl, its clear solution forms a precipitate. c. aq. NaOH, its clear solution forms a precipitate. c. aq. NaOH, its suspension dissolves. n conc. aq. NaOH and conc. aq. HCl, its suspension dissolves. dation number of nitrogen in the HNO3? B) +1 C) +5 D) +7 efficient of Fe ³⁺ when the following equation is balanced? $Fe^{3+} \rightarrow CNO^- + Fe^{2+}$ (basic solution) B) 2 C) 3 D) 4	est describe(s) the behavior of an amphoteric hydroxide in water? c. aq. HCI, its suspension dissolves. c. aq. HCI, its clear solution forms a precipitate. c. aq. NaOH, its clear solution forms a precipitate. c. aq. NaOH, its suspension dissolves. n conc. aq. NaOH and conc. aq. HCI, its suspension dissolves. dation number of nitrogen in the HNO ₃ ? B) +1 C) +5 D) +7 E) +3 efficient of Fe ³⁺ when the following equation is balanced? $Fe^{3+} \rightarrow CNO^- + Fe^{2+}$ (basic solution)

- C) $Br_2 \rightarrow BrO_3^-$
- D) $HSO_4^- \rightarrow H_2SO_3$
- E) NO \rightarrow HNO₂

Table 20.2					
Half-reaction	E° (V)				
Cr^{3+} (aq) + $3e^{-} \rightarrow Cr$ (s)	-0.74				
Fe^{2+} (aq) + $2e^{-} \rightarrow Fe$ (s)	-0.440				
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (s)	+0.771				
Sn ⁴⁺ (aq) + 2e ⁻ → Sn ²⁺ (aq)	+0.154				
13) Which of the following read A) Sn ⁴⁺ (aq) + Fe ²⁺ (s) → B) 2Cr (s) + 3Fe ²⁺ (s) → C) 2Cr ³⁺ (aq) + 3Sn ²⁺ (ac D) Sn ²⁺ (aq) + Fe ²⁺ (s) E) 3Fe ²⁺ (aq) + Cr ³⁺ (ac	→ Sn^{2+} (aq) + $3Fe$ (s) + $2Cr^{2}$ q) → $3Sn^{4+}$ (ac) → Sn^{4+} (aq) +	Fe (s) ³⁺ (aq) q) + 2Cr (s) Fe ³⁺ (aq)	written?		13)
14) The standard cell potential (E° _{cell}) for the voltaic cell based on the reaction below is V.				s	14)
Sn ²⁺ (aq) + 2Fe ³⁺ (ac) →2Fe ²⁺ (aq) + Sn ⁴⁺ (aq)			
A) +1.21 B) +().617	C) +0.46	D) +1.39	E) -0.46	
15) The reduction half reaction A) H ₂ (g, 1 atm) → 2H+ B) 2H+ (aq) + 2OH ⁻ → C) 2H+ (aq, 1M) + Cl ₂ (D) 2H+ (aq, 1M) + 2e ⁻ E) O ₂ (g) + 4H+ (aq) + 4	(aq, 1M) + 2e H ₂ O (I) aq) →2HCI (a →H ₂ (g, 1 atn	- aq) n)	n electrode is		15)
16) The standard cell potential (E°_{CeII}) for the reaction below is +1.10 V. The cell potential for this reaction is V when the concentration of [Cu^{2+}] = 1.0 × 10 ⁻⁵ M and [Zn^{2+}] = 1.0 M.					16)
Zn (s) + Cu ²⁺ (aq)	\rightarrow Cu (s) + Z	n ²⁺ (aq)			
A) 0.95 B) 0.	80	C) 1.25	D) 1.10	E) 1.40	
 17) The thermodynamic quanti A) bond energy B) entropy C) internal energy D) enthalpy E) heat flow 	ty that express	es the degree of disc	order in a system is _		17)
18) The normal boiling point of kJ/mol. What is the change	n entropy in t	he system in J/K whe			18)
condenses to a liquid at the A) 373 B) 8		g point? C) -40.7	D) -88.8	E) -238	

	19) △S is positive for the A) 2NO ₂ (g) → N B) 2Hg (l) + O ₂ (c) C) BaF ₂ (s) → Ba D) CO ₂ (g) → CO E) 2H ₂ (g) + O ₂	1_2O_4 (g) (g) $\rightarrow 2HgO$ (s) a^{2+} (aq) + 2F ⁻ (aq) D_2 (s)				19)
	20) Of the following, the A) HCI (s)	e entropy of B) HCI (g)	is the largest. C) HCI (I)	D) HBr (g)	E) HI (g)	20)
	21) The standard Gibbs	free energy of forma	ition of is ze	ero.		21)
	(a) H ₂ O (I) (b) Na (s) (c) H ₂ (g)					
	A) (a) only B) (b) only C) (c) only D) (b) and (c) E) (a), (b), and (c)	1				
TRUE/	FALSE. Select A in the	e scantron if the state	ement is TRUE and	B if the statement i	s FALSE (3 pts).	

22) The solubility product of a compound is numerically equal to the product of the concentration of the	T or F
ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.	

23) The vaporization of a substance at its boiling point is an isothermal process	T or F
24) The more negative ΔG° is for a given reaction, the larger the value of the corresponding equilibrium constant, K.	T or F
25) The standard reduction potential, E°_{red} , is proportional to the stoichiometric coefficient.	T or F

26) The standard reduction potential of X is 1.23 V and that of Y is -0.44 V therefore X is oxidized by Y. T or F