

Read questions carefully to understand what is being asked, before answering. No outside paper is allowed. Use the reverse side of your answer paper as scratch. Use the important equation table and periodic table provided. (Total points = 58 + (20x3 =)60 = 118).

Show your calculation first with set up equation. Then use the raw data with units in the equation in the equation and then complete the calculation.

Weak base 1) How many moles of NH4Cl must be added to 2.0 L of 0.10 M ammonia (NH3) to form a buffer, whose pH=9.0? Assume that no volume change happens when NH4Cl is added into the solution). Kb of NH3 is 1.8×10^{-5} (8 pts).

 $Ka = \frac{Kw}{Kh} = \frac{10^{-14}}{18.10^{-5}} = 5.555 \times 10^{-10}$

[0.10] =0,5555 [Acid] = 0,18M 0,18M NH4C1 x Z.OL = 0,36 moles

0.36 mdes NH4C1

2) If Ksp of calcium phosphate, Ca3(PO4)2 in water is 1.0×10^{-33} , then what is its solubility in water in gram/L (10 pts)?

(03(PO4)2 = 3Ca2+ ZPO43-Ca 40.078

 $KSp = [(a^{2+}]^3 [PO_4^3 -]^2 = 1.0 \times 10^{-33}$

 $(a_3(P0_4)_2) = 1.0 \times 10^{-53}$ 9.85×10 10^{-7}

Initial ant-5 35 $1.0 \times 10^{-33} = (35)^3 \times (25)^2 = 3.65^5$ = 3.05×10 9/1

27(9)53 × 452 = 10855

S= (1.0×1033/108) == 9.85×108 mol

		Products	,	tonts	(coducts	Reactors
	160xx = 8	en A Gf -	€ nA	Gj	A 50° =	Enso.	-5n50
1	AHORN= 2	nAHf-	5 nst	-			
+AH=+TAS	3) The following inform	ation is available fo CaCO3 (s)				3)	
13	ΔG_{f}° (kJ/mol) ΔH_{f}° (kJ/mol)	-1129.16 -1207.6	-603.42 -635.09	-394.36 -393.51			
	Sf° (J/K.mol)	91.7	38.2	213.74			
$\Delta G_{(x)}^{6}$	(a) Calculate the Gibb	s free energy chang - 603.4	ge of the reaction	on (3pts.) . 11 29./6	(31.	38 KJ	16
> ×	(b) Calculate the temp	erature in <u>°C</u> when	the reaction w	vill be favoral	ole (5 pts.). 3 9	3,51	r a
0= A6= At				DH0	xn= (6000	100 -635.	.09)-(-1207,(
T = AA	179 x 103 8/m	= 1117,6	7K		40xn = 17	9 KJ/mol	
				DS ox	~= (Z13.	74+38.	(2)-(91,7)
1117.07K	- 273.15°C=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	45.92 C		Λς	or= 160		
This realter	~ will be favor					,	
	4) A nonlinear best fit plot $Na_2B_4O_5(OH)_4 \cdot 8H_2O(s)$ gives $\Delta H^\circ = 96$ kJ/mo	< > 2 Na ⁺ (aq) + B	$B_4O_5(OH)_4^{2-}(aq)$	$+8 H_2O(1)$		September 2 section	
20.4	Show set up, raw data		^		ThK	-	
	J/mol·K						
/.	26= DH-TD	S = 96 x 1	035/mol	- (29	8.15KX	306 J/mol	·K)
	$\Delta G = 655$	S J/mol 0	6.55	S KJ/A	nol		
655	ST/mol = -8;	314 J/mol.	K. 29	8.15K	·Ink		
	CHELLED .	655557m -2478,8191	Hand =	la k	(= -2.6	44404 <u>3</u>	3
e1-	2.6444043 = K	ieg = 7.11	04766	X 10 -	7		
			2	Keg:	- 7.105	× 10-3	7. ()

5)	Given (a) O2 (g) + 4H+ (aq)+ 4e> 2 H2O (l) $E_{red}^0 = + 1.23 \text{ V}$ 5)	
	And Ag^+ (aq) + e ⁻ > Ag (s) $E_{red}^0 = +0.80 \text{ V}$	
	For redox reaction: $4Ag(s) + O_2(g) + 4H + (aq)> 4Ag + (aq) + 2H_2O(1)$	
	i) Write the cathode reaction (2 pts.):	
	$Oz(9) + 44 + (aq) + 4e^{-} \rightarrow M_zO(2)$	
	ii) Write the anode reaction (2 pts.):	•
	4 Ag(s) -> 4e- + 4Ag+(ag) = (Ag(s) -> e+ Ag+(ag))
	1) Show set up and all your work to calculate the standard free energy shared the	1
N=4 mole	eaction at 25°C (4 pts.) $\triangle G^{\circ} = -NFE$ (ell E° cell E° cell E° cathode $-E^{\circ}$ anode	
F = 96,485 C	Ecell = +1,23 V - (+0,80V)=0,43	V
Mul e-	$E'(e) = +1,23 V - (+0.80 V) = 0.43$ $\Delta G' = -460 E \times \frac{96,48 E}{Mol f} \times 0.43 = -165954.7 \text{ T/mol}$ This is a set up and all your work to calculate the equilibrium constant for the reaction	
	Mold- (105/5/12)	7
(i	Show set up and all your work to calculate the equilibrium constant for the reaction $\frac{1}{1000}$	' /
a cicorl this	>> \ 6° cxn = - RT In K OR Ecell = 0.0597 / log	K
approach	-1659 S4, 2 S/mol = -8,314 S/mol. K 298, ISK. In K	
-16545	1.2 STAOT = In K = 66.94 889514	
2(12)	= h K = 66.94 889314	
- (41	11 0/122000	
,	e66.94889514 = Keg = 1.18997x1039	
6) Ho	w many seconds are required to produce 4.00 g of aluminum metal from the	
ele	trolysis of molten AlCl3 with an electrical current of 12.0 A? Show set up and all your	
	$A13++30-\rightarrow A16$	
MW 26.9879	mol	
(1 00 11	mole-	
4.00g A(- 0,148747 mot A1 x 30000 - 0,444 741 margo	
26.982g/m	- 0,148747 mot A1 x 3000 - 0,444 741 0000	
	(06.4356)	_
0.444741 A	$\frac{1}{120000000000000000000000000000000000$	
	17.000/s = 13575.9 Second	5/
12.0A= 12		
a	\mathcal{C}	

MULTIPLE CHOICE. On the scantron fill the bubble with number same as the question number. Show your work to select the one response that best completes the statement or answers the question (3 pts each).

B) CsF, HF C) NaI, HI D) RbCl, HCl E) none of the above	
8) In which of the following aqueous solutions would you expect PbCl2to have the lowest solubility? 8) A) 0.015 M NaCl B) 0.020 M BaCl2 C O G C	
C) pure water D) 0.015 M PbNO3 6008 0.015 Pb	
E) 0.020 M KCI 0,020 C	
9) Which below best describe(s) the behavior of an amphoteric hydroxide in water? A) With conc. aq. HCl, its suspension dissolves. B) With conc. aq. HCl, its clear solution forms a precipitate. C) With conc. aq. NaOH, its clear solution forms a precipitate. D) With conc. aq. NaOH, its suspension dissolves. E) With both conc. aq. NaOH and conc. aq. HCl, its suspension dissolves.	
+ 1 + 5 - 6	
10) What is the oxidation number of nitrogen in the HNO3?	
A) -1 B) +1 C) +5 D) +7 E) +3	rance greaters and the
11) What is the coefficient of Fe ³⁺ when the following equation is balanced? $CN^{-} + Fe^{3+} \rightarrow CNO^{-} + Fe^{2+} \qquad \text{(basic solution)}$	
A) 1 B) 2 C) 3 D) 4 E) 5	
(eduction)
12) Which transformation could take place at the cathode of an electrochemical cell? 12) Which transformation could take place at the cathode of an electrochemical cell? 12) ✓ A) Mn ² +→Mn ² O ₄ - B) Mn ² O ₂ →Mn ² O ₄ -	and the second s
C) $Br_2 \rightarrow BrO_3 - \mu$ D) $HSO_4 \rightarrow H_2SO_3$	
E) NO → HNO2	
7(Fe3++e> Fe2+) CN> (NO-	
$\int (N + H_2O \rightarrow CNO - + 2$	HRT
23++ (N-+ 20H> @Fest+(NO-+HZO/CN-+ 20H> CNO-+	420
D) H50_4$^- \to H_2$S0_3 E) NO \to HNO_2 Reduction Z(Fe^{3f} + e^- \to Fe^{2f}) CN^- \to CNO^- (N^+ H_2O \to CNO^- + ZOH^- + ZOH^$	-1 z0 +2e

	Table 20.2		Grade (ntr) e		
	Half-reaction	E° (V) A Wh	ad e		
	Cr^{3+} (aq) + 3e ⁻ \rightarrow	Cr (s) -0.74	Goods (a)			
	Fe^{2+} (aq) + $2e^{-}$ \rightarrow	Fe (s) -0.440	(appar)			
	Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{3+}$	e ²⁺ (s) +0.771	p.			
	$\operatorname{Sn^{4+}}(\operatorname{aq}) + 2e^{-} \rightarrow$	Sn ²⁺ (aq) +0.154	God .			7
	13) Which of the follow	wing reactions will	l occur spontaneous	sly as written?		13)
	A) Sn4+ (aq) +	$Fe^{2+}(s) \rightarrow Sn^{2+}(s)$	aq) + Fe (s)			
	(B) 2Cr (s) + 3Fe	e^{2+} (s) \rightarrow 3Fe (s) +	2Cr3+ (aq)			
	$(2)^{2}Cr^{3}+(aq)+$	$3Sn^{2+}$ (aq) $\rightarrow 3Sn^{4}$	¹⁺ (aq) + 2Cr (s)	4		
	_D)-Sn ²⁺ (aq) + 1	Fe^{2+} (s) $\rightarrow Sn^{4+}$ (a	iq) + Fe ³⁺ (aq)			
	E) 3Fe ²⁺ (aq) +	Cr^{3+} (aq) $\rightarrow Cr$ (s) + 3Fe ³ + (aq)			
						5
	14) The standard cell p	otential (E°cell) for	r the voltaic cell bas	sed on the reaction be	elow is	14) B
	V.		771 - (+ Ci			
	$Sn^{2+}(aa) + 2$	$2 \text{Fe}^{3+} \text{ (aq)} \rightarrow 2 \text{Fe}^{2+}$	15			
	Sit (uq) 1 2	(aq) >21e=	$(aq) + 5n^{\perp}$ (aq)		1 162	
	A) +1.21	B) +0.617	C) +0.46	D) +1.39	E) -0.46	
						\mathcal{D}
	15) The reduction half i	reaction occurring	in the standard hyd	rogen electrode is _		15)
	A) H ₂ (g, 1 atm)	\rightarrow 2H+ (aq, 1M) +	2e-			
	B) 2H+ (aq) + 20	OH- →H ₂ O (1)				
	C) 2H+ (aq, 1M)	+ Cl ₂ (aq) → 2H0	Cl (ag)		*	
		+ 2e ⁻ → H ₂ (g, 1				
		$(aq) + 4e^- \rightarrow 2H_2$				
	2 (8)	(44)	(1)			
1	(6) The standard cell po	tential (E°cou) for	the reaction below:	0 1 1 1 0 W The 11		A
	reaction is	V when the con-	combaction of IC 24:	s +1.10 v. The cell po	otential for this	16) / (
		_ v when the con	tentration of [Cu ²⁺]	$ = 1.0 \times 10^{-5} \text{ M} \text{ and}$	$[Zn^{2+}] = 1.0 M.$	
	Zn (s) + Cu	$2+ (aq) \rightarrow Cu (s) +$	Zn ²⁺ (aq)			
	A) 0.95	B) 0.80	C) 1.25	D) 1.10	E) 1.40	
41						77
1	7) The thermodynamic	quantity that expre	esses the degree of o	disorder in a system	is	17)
	A) bond energy B) entropy					
	C) internal energy					
	D) enthalpy					
	E) heat flow					
	A					·
18	3) The normal boiling p	oint of water is 100	0.0°C and its molar	enthalpy of vaporiza	tion is 40.67	18)
	kJ/mol. What is the cr	nange in entropy in	$_{ m I}$ the system in J/K $_{ m V}$	when 39.3 grams of st	team at 1 atm	10)
	condenses to a liquid	at the normal boili	ng point?		4	
	A) 373	B) 88.8	C) -40.7	D) -88.8	E) -238	

	19) ΔS is positive for the reaction	19)
	A) $2NO_2(g) \rightarrow N_2O_4(g)$	â
	B) $2Hg(l) + O_2(g) \rightarrow 2HgO(s)$	
	C) BaF ₂ (s) \rightarrow Ba ²⁺ (aq) + 2F ⁻ (aq) $\sqrt{3}$ 50 c/2 \hbar 70~	
	D) CO_2 (g) $\rightarrow CO_2$ (s)	
	E) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	
	20) Of the following, the entropy of is the largest.	20) E
	A) HCl (s) B) HCl (g) C) HCl (l) D) HBr (g) E) HI (g)	20)
	21) The standard Gibbs free energy of formation of is zero.	21)
	(a) H ₂ O (l)	
	(b) Na (s)	
	(c) $H_2(g)$	
	A) (a) only	
	B) (b) only	
	C) (c) only	
	D) (b) and (c)	
	E) (a), (b), and (c)	
TRU	E/FALSE. Select A in the scantron if the statement is TRUE and B if the statement is FALSE (3 pts).	
	22) The solubility product of a compound is numerically equal to the product of the concentration of the ions involved in the equilibrium, each multiplied by its coefficient in the equilibrium reaction.	T or
	caised to power	
	23) The vaporization of a substance at its boiling point is an isothermal process	(T)or F
	24) The more negative ΔG °is for a given reaction, the larger the value of the corresponding equilibrium constant, K.	Tor F
	25) The standard reduction potential, E°red, is proportional to the stoichiometric coefficient.	T of F
	26) The standard reduction potential of X is 1.23 V and that of Y is -0.44 V therefore X is oxidized by Y.	T on F